Kurihara invariants and elimination of wild ramification
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 25-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article continues a series of works devoted to relation between two approaches to classification of complete discrete valuation fields with imperfect residue fields and in particular 2-dimensional local fields in the case of mixed characteristic. One of this approaches was introduced in the work of Masato Kurihara “On two types of complete discrete valuation fields” in terms of the module of differentials. Another one is based on Epp's theory of elimination of wild ramification. We establish a lower bound for the degree of constant field extension that makes a given field into an almost standard one. This bound is expressed in terms of the invariant introduced in Kurihara's work.
@article{ZNSL_2020_492_a2,
     author = {S. V. Vostokov and I. B. Zhukov and O. Yu. Ivanova},
     title = {Kurihara invariants and elimination of wild ramification},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {25--44},
     year = {2020},
     volume = {492},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a2/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - I. B. Zhukov
AU  - O. Yu. Ivanova
TI  - Kurihara invariants and elimination of wild ramification
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 25
EP  - 44
VL  - 492
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a2/
LA  - ru
ID  - ZNSL_2020_492_a2
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A I. B. Zhukov
%A O. Yu. Ivanova
%T Kurihara invariants and elimination of wild ramification
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 25-44
%V 492
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a2/
%G ru
%F ZNSL_2020_492_a2
S. V. Vostokov; I. B. Zhukov; O. Yu. Ivanova. Kurihara invariants and elimination of wild ramification. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 25-44. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a2/

[1] O. Ivanova, S. Vostokov, I. Zhukov, “On two approaches to classification of higher local fields”, Chebyshevskii sbornik, 20:2 (2019), 177–189 | MR

[2] O. Hyodo, “Wild ramification in the imperfect residue field case”, Galois Representations and Arithmetic Algebraic Geometry (Kyoto, 1985/Tokyo, 1986), Adv. Stud. Pure Math., 12, North-Holland, Amsterdam, 1987, 287–314 | DOI | MR

[3] I. B. Zhukov, M. V. Koroteev, “Ustranenie vysshego vetvleniya”, Algebra i analiz, 11:6 (1999), 153–177

[4] M. Kurihara, “On two types of complete discrete valuation fields”, Compos. Math., 63 (1987), 237–257 | MR | Zbl

[5] M. Kurihara, “Two types of complete discrete valuation fields”, Invitation to higher local fields (Münster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 109–112 https://msp.org/gtm/2000/03/index.xhtml | DOI | MR | Zbl

[6] O. Yu. Ivanova, “Rang topologicheskoi $K$-gruppy kak $\mathbb Z_p$-modulya”, Algebra i analiz, 20:4 (2008), 87–117

[7] O. Yu. Ivanova, “O svyazi klassifikatsii Kurikhary s teoriei ustraneniya vetvleniya”, Algebra i analiz, 24:2 (2012), 130–153

[8] I. B. Zhukov, A. I. Madunts, “Mnogomernye polnye polya: topologiya i drugie osnovnye ponyatiya”, Trudy S.-Peterb. mat. obsch., 3 (1995), 4–46 | Zbl

[9] I. B. Zhukov, “Higher dimensional local fields”, Invitation to higher local fields (Münster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 5–18 https://msp.org/gtm/2000/03/index.xhtml | DOI | MR | Zbl