On the algebra of the Möbius crown
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 149-156
Cet article a éte moissonné depuis la source Math-Net.Ru
A commutative algebra over a field gives rise to a representation of the category of finite sets and surjective maps. We consider the restriction of this representation to the subcategory of sets of cardinality at most $r$. For each $r$, we present two non-isomorphic algebras that give rise to isomorphic representations of this subcategory.
@article{ZNSL_2020_492_a10,
author = {S. S. Podkorytov},
title = {On the algebra of the {M\"obius} crown},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {149--156},
year = {2020},
volume = {492},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a10/}
}
S. S. Podkorytov. On the algebra of the Möbius crown. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 149-156. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a10/
[1] S. S. Podkorytov, “Kommutativnye algebry i predstavleniya kategorii konechnykh mnozhestv”, Zap. nauch. semin. POMI, 388, 2011, 189–195
[2] W. Dreckmann, Linearization reflects isomorphism, preprint, 2012 https://www.idmp.uni-hannover.de/fileadmin/institut/IDMP-Studium-Mathematik/downloads/Dreckmann/lincat.pdf
[3] J. Gubeladze, “The isomorphism problem for commutative monoid rings”, J. Pure Appl. Algebra, 129 (1998), 35–65 | DOI | MR | Zbl
[4] J.-L. Loday, Cyclic homology, Springer-Verlag, 1992 | MR | Zbl