On the algebra of the Möbius crown
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 149-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A commutative algebra over a field gives rise to a representation of the category of finite sets and surjective maps. We consider the restriction of this representation to the subcategory of sets of cardinality at most $r$. For each $r$, we present two non-isomorphic algebras that give rise to isomorphic representations of this subcategory.
@article{ZNSL_2020_492_a10,
     author = {S. S. Podkorytov},
     title = {On the algebra of the {M\"obius} crown},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--156},
     year = {2020},
     volume = {492},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a10/}
}
TY  - JOUR
AU  - S. S. Podkorytov
TI  - On the algebra of the Möbius crown
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 149
EP  - 156
VL  - 492
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a10/
LA  - ru
ID  - ZNSL_2020_492_a10
ER  - 
%0 Journal Article
%A S. S. Podkorytov
%T On the algebra of the Möbius crown
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 149-156
%V 492
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a10/
%G ru
%F ZNSL_2020_492_a10
S. S. Podkorytov. On the algebra of the Möbius crown. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 149-156. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a10/

[1] S. S. Podkorytov, “Kommutativnye algebry i predstavleniya kategorii konechnykh mnozhestv”, Zap. nauch. semin. POMI, 388, 2011, 189–195

[2] W. Dreckmann, Linearization reflects isomorphism, preprint, 2012 https://www.idmp.uni-hannover.de/fileadmin/institut/IDMP-Studium-Mathematik/downloads/Dreckmann/lincat.pdf

[3] J. Gubeladze, “The isomorphism problem for commutative monoid rings”, J. Pure Appl. Algebra, 129 (1998), 35–65 | DOI | MR | Zbl

[4] J.-L. Loday, Cyclic homology, Springer-Verlag, 1992 | MR | Zbl