Absence of local unconditional structure in spaces of smooth functions on the two-dimensional torus
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 153-172

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a finite collection $\{T_1, \ldots, T_J\}$ of differential operators with constant coefficients on $\mathbb{T}^2$ and the space of smooth functions generated by this collection, namely, the space of functions $f$ such that $T_j f \in C(\mathbb{T}^2)$. It is proved that under a certain natural condition this space is not isomorphic to a quotient of a $C(S)$-space and does not have a local unconditional structure. This fact generalizes the previously known result that such spaces are not isomorphic to a complemented subspace of $C(S)$.
@article{ZNSL_2020_491_a8,
     author = {A. Tselishchev},
     title = {Absence of local unconditional structure in spaces of smooth functions on the two-dimensional torus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {153--172},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a8/}
}
TY  - JOUR
AU  - A. Tselishchev
TI  - Absence of local unconditional structure in spaces of smooth functions on the two-dimensional torus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 153
EP  - 172
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a8/
LA  - ru
ID  - ZNSL_2020_491_a8
ER  - 
%0 Journal Article
%A A. Tselishchev
%T Absence of local unconditional structure in spaces of smooth functions on the two-dimensional torus
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 153-172
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a8/
%G ru
%F ZNSL_2020_491_a8
A. Tselishchev. Absence of local unconditional structure in spaces of smooth functions on the two-dimensional torus. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 153-172. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a8/