Absence of local unconditional structure in spaces of smooth functions on the two-dimensional torus
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 153-172
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider a finite collection $\{T_1, \ldots, T_J\}$ of differential operators with constant coefficients on $\mathbb{T}^2$ and the space of smooth functions generated by this collection, namely, the space of functions $f$ such that $T_j f \in C(\mathbb{T}^2)$. It is proved that under a certain natural condition this space is not isomorphic to a quotient of a $C(S)$-space and does not have a local unconditional structure. This fact generalizes the previously known result that such spaces are not isomorphic to a complemented subspace of $C(S)$.
@article{ZNSL_2020_491_a8,
author = {A. Tselishchev},
title = {Absence of local unconditional structure in spaces of smooth functions on the two-dimensional torus},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {153--172},
publisher = {mathdoc},
volume = {491},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a8/}
}
TY - JOUR AU - A. Tselishchev TI - Absence of local unconditional structure in spaces of smooth functions on the two-dimensional torus JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 153 EP - 172 VL - 491 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a8/ LA - ru ID - ZNSL_2020_491_a8 ER -
A. Tselishchev. Absence of local unconditional structure in spaces of smooth functions on the two-dimensional torus. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 153-172. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a8/