Harmonic measure of arcs of fixed length
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 145-152

Voir la notice de l'article provenant de la source Math-Net.Ru

Jordan domains $\Omega$ with piece-wise smooth boundaries are treated such that all arcs $\alpha\subset \partial \Omega$ having fixed length $l$, $0$, have equal harmonic measures $\omega(z_0,\alpha,\Omega)$ evaluated at some point $z_0\in \Omega$. It is proved that $\Omega$ is a disk centered at $z_0$ if the ratio $l/\text{length}(\partial \Omega)$ is irrational and that $\Omega$ possesses rotational symmetry by some angle $2\pi/n$, $n\ge 2$, around the point $z_0$, if this ratio is rational.
@article{ZNSL_2020_491_a7,
     author = {S. Samarasiri and A. Yu. Solynin},
     title = {Harmonic measure of arcs of fixed length},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--152},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a7/}
}
TY  - JOUR
AU  - S. Samarasiri
AU  - A. Yu. Solynin
TI  - Harmonic measure of arcs of fixed length
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 145
EP  - 152
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a7/
LA  - en
ID  - ZNSL_2020_491_a7
ER  - 
%0 Journal Article
%A S. Samarasiri
%A A. Yu. Solynin
%T Harmonic measure of arcs of fixed length
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 145-152
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a7/
%G en
%F ZNSL_2020_491_a7
S. Samarasiri; A. Yu. Solynin. Harmonic measure of arcs of fixed length. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 145-152. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a7/