Harmonic measure of arcs of fixed length
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 145-152
Voir la notice de l'article provenant de la source Math-Net.Ru
Jordan domains $\Omega$ with piece-wise smooth boundaries are treated such that all arcs $\alpha\subset \partial \Omega$ having fixed length $l$, $0$, have equal harmonic measures $\omega(z_0,\alpha,\Omega)$ evaluated at some point $z_0\in \Omega$. It is proved that $\Omega$ is a disk centered at $z_0$ if the ratio $l/\text{length}(\partial \Omega)$ is irrational and that $\Omega$ possesses rotational symmetry by some angle $2\pi/n$, $n\ge 2$, around the point $z_0$, if this ratio is rational.
@article{ZNSL_2020_491_a7,
author = {S. Samarasiri and A. Yu. Solynin},
title = {Harmonic measure of arcs of fixed length},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {145--152},
publisher = {mathdoc},
volume = {491},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a7/}
}
S. Samarasiri; A. Yu. Solynin. Harmonic measure of arcs of fixed length. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 145-152. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a7/