Harmonic measure of arcs of fixed length
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 145-152
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Jordan domains $\Omega$ with piece-wise smooth boundaries are treated such that all arcs $\alpha\subset \partial \Omega$ having fixed length $l$, $0, have equal harmonic measures $\omega(z_0,\alpha,\Omega)$ evaluated at some point $z_0\in \Omega$. It is proved that $\Omega$ is a disk centered at $z_0$ if the ratio $l/\text{length}(\partial \Omega)$ is irrational and that $\Omega$ possesses rotational symmetry by some angle $2\pi/n$, $n\ge 2$, around the point $z_0$, if this ratio is rational.
@article{ZNSL_2020_491_a7,
     author = {S. Samarasiri and A. Yu. Solynin},
     title = {Harmonic measure of arcs of fixed length},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--152},
     year = {2020},
     volume = {491},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a7/}
}
TY  - JOUR
AU  - S. Samarasiri
AU  - A. Yu. Solynin
TI  - Harmonic measure of arcs of fixed length
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 145
EP  - 152
VL  - 491
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a7/
LA  - en
ID  - ZNSL_2020_491_a7
ER  - 
%0 Journal Article
%A S. Samarasiri
%A A. Yu. Solynin
%T Harmonic measure of arcs of fixed length
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 145-152
%V 491
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a7/
%G en
%F ZNSL_2020_491_a7
S. Samarasiri; A. Yu. Solynin. Harmonic measure of arcs of fixed length. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 145-152. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a7/

[1] P. Ebenfelt, D. Khavinson, H.S. Shapiro, “A free boundary problem related to single-layer potentials”, Ann. Acad. Sci. Fenn. Math., 27:1 (2002), 21–46 | MR | Zbl

[2] S. J. Gardiner, “An equilibrium measure characterization of circles”, Forum Math., 14 (2002), 953–954 | DOI | MR | Zbl

[3] K. Øyma, “Non-Smirnov domains”, Proc. Amer. Math. Soc., 123:5 (1995), 1425–1429 | DOI | MR

[4] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[5] M. W. Keldysh, M. A. Lavrentiev, “Sur la repréntation conforme des domaines limités par des courbes rectifiables”, Ann. Sci. École Norm. Sup. (3), 54 (1937), 1–38 | DOI | MR | Zbl

[6] O. Mendez, W. Reichel, “Electrostatic characterization of spheres”, Forum Math., 12:2 (2000), 223–245 | MR | Zbl

[7] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 299, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

[8] T. Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, 28, Cambridge University Press, Cambridge, 1995 | MR | Zbl