Voir la notice du chapitre de livre
@article{ZNSL_2020_491_a7,
author = {S. Samarasiri and A. Yu. Solynin},
title = {Harmonic measure of arcs of fixed length},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {145--152},
year = {2020},
volume = {491},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a7/}
}
S. Samarasiri; A. Yu. Solynin. Harmonic measure of arcs of fixed length. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 145-152. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a7/
[1] P. Ebenfelt, D. Khavinson, H.S. Shapiro, “A free boundary problem related to single-layer potentials”, Ann. Acad. Sci. Fenn. Math., 27:1 (2002), 21–46 | MR | Zbl
[2] S. J. Gardiner, “An equilibrium measure characterization of circles”, Forum Math., 14 (2002), 953–954 | DOI | MR | Zbl
[3] K. Øyma, “Non-Smirnov domains”, Proc. Amer. Math. Soc., 123:5 (1995), 1425–1429 | DOI | MR
[4] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[5] M. W. Keldysh, M. A. Lavrentiev, “Sur la repréntation conforme des domaines limités par des courbes rectifiables”, Ann. Sci. École Norm. Sup. (3), 54 (1937), 1–38 | DOI | MR | Zbl
[6] O. Mendez, W. Reichel, “Electrostatic characterization of spheres”, Forum Math., 12:2 (2000), 223–245 | MR | Zbl
[7] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 299, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[8] T. Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, 28, Cambridge University Press, Cambridge, 1995 | MR | Zbl