On the rate of decay of a Meyer scaling function
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 52-65

Voir la notice de l'article provenant de la source Math-Net.Ru

A function with the following properties is called a Meyer scaling function: $\varphi\colon\Bbb R\to\Bbb R$, its integral shifts $\varphi(\cdot+n)$, $n\in\Bbb Z$, are orthonormal in $L_2(\Bbb R)$, and its Fourier transform $\widehat{\varphi}(y)=\frac{1}{\sqrt{2\pi}}\int\limits_{\Bbb R}\varphi(t)e^{-iyt} dt$ has the following properties: $\widehat{\varphi}$ is even, $\widehat{\varphi}=0$ outside $[-\pi-\varepsilon,\pi+\varepsilon]$, $\widehat{\varphi}=\frac{1}{\sqrt{2\pi}}$ on $[-\pi+\varepsilon,\pi-\varepsilon]$, where $\varepsilon\in\bigl(0,\frac{\pi}{3}\bigr]$. Here is the main result of the paper. Assume that $$ \omega\colon[ 0,+\infty)\to [ 0,+\infty) $$ and the function $\frac{\omega(x)}{x}$ decreases. Then the following assertions are equivalent. 1. For every (or, equivalently, for some) $\varepsilon\in(0,\frac{\pi}{3}]$ there exists $x_0>0$ and a Meyer scaling function $\varphi$ such that $\widehat{\varphi}=0$ outside $[-\pi-\varepsilon,\pi+\varepsilon]$ and $|\varphi(x)|\leqslant e^{-\omega(|x|)}$ for all $|x|>x_0$. 2. $\int\limits_1^{+\infty}\frac{\omega(x)}{x^2} dx+\infty$.
@article{ZNSL_2020_491_a3,
     author = {O. L. Vinogradov},
     title = {On the rate of decay of a {Meyer} scaling function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--65},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a3/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - On the rate of decay of a Meyer scaling function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 52
EP  - 65
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a3/
LA  - ru
ID  - ZNSL_2020_491_a3
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T On the rate of decay of a Meyer scaling function
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 52-65
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a3/
%G ru
%F ZNSL_2020_491_a3
O. L. Vinogradov. On the rate of decay of a Meyer scaling function. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 52-65. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a3/