@article{ZNSL_2020_491_a3,
author = {O. L. Vinogradov},
title = {On the rate of decay of a {Meyer} scaling function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {52--65},
year = {2020},
volume = {491},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a3/}
}
O. L. Vinogradov. On the rate of decay of a Meyer scaling function. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 52-65. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a3/
[1] Y. Meyer, “Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs”, Séminaire Bourbaki, 662, 1985–1986, 209–223 | MR
[2] I. Dobeshi, Desyat lektsii po veivletam, RKhD, Izhevsk, 2001
[3] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR
[4] A. E. Ingham, “A note on Fourier transforms”, J. London Math. Soc., 9 (1934), 29–32 | DOI | MR
[5] N. Levinson, Gap and density theorems, AM, New York, 1940 | MR
[6] W. A. J. Luxemburg, J. Korevaar, “Entire functions and Müntz – Szász type approximation”, Trans. Amer. Math. Soc., 157 (1971), 23–37 | MR | Zbl
[7] V. Khavin, B. Jöricke, The uncertainty principle in harmonic analysis, Springer-Verlag, Berlin –Heidelberg, 1994 | MR | Zbl
[8] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatgiz, M., 1959
[9] E. Laeng, “Uncertainty inequalities for Fourier series of pairs of reciprocal positive functions”, Bull. London Math. Soc., 31 (1999), 314–322 | DOI | MR
[10] P. L. Ulyanov, “O klassakh beskonechno differentsiruemykh funktsii”, Mat. sb., 181:5 (1990), 589–609
[11] Y. Taguchi, “Fourier coefficients of periodic functions of Gevrey classes and ultradistributions”, Yokohama Math. J., 35 (1987), 51–60 | MR | Zbl