@article{ZNSL_2020_491_a2,
author = {A. V. Vasin},
title = {Singular integral operators on {Zygmund} spaces on},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {43--51},
year = {2020},
volume = {491},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a2/}
}
A. V. Vasin. Singular integral operators on Zygmund spaces on. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 43-51. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a2/
[1] D. S. Anikonov, “On the boundedness of a singular integral operator in the space $ C^{\alpha}(\overline G)$”, Math. USSR-Sb., 33:4 (1977), 447–464 | DOI | MR | Zbl
[2] S. Campanato, “Proprieta di holderianita di alcune classi di funzioni. [Holder properties of certain function classes]”, Ann. Sc. Norm. Super. Pisa, 17:3 (1963), 175–188 | MR | Zbl
[3] R. A. DeVore, R. C. Sharpley, “Besov spaces on domains in $\mathbb{R}^d$”, Trans. Amer. Math. Soc., 335:2 (1993), 843–864 | MR | Zbl
[4] S. Janson, “Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation”, Duke Math. J., 47 (1980), 959–982 | DOI | MR | Zbl
[5] S. Janson, “On functions with condition on mean oscilation”, Ark. Mat., 14 (1976), 189–196 | DOI | MR | Zbl
[6] P. W. Jones, “Extension theorems for $\mathrm{BMO}$”, Indiana Univ. Math. J., 29 (1980), 41–66 | DOI | MR | Zbl
[7] S. Kislyakov, N. Kruglyak, Extremal problems in interpolation theory, Whitney-Besicovitch coverings, and singular integrals, Birkhauser/Springer Basel AG, 2013 | MR | Zbl
[8] J. Mateu, J. Orobitg, J. Verdera, “Extra cancellation of even Calderón-Zygmund operators and quasiconformal mappings”, J. Math. Pures Appl., (9) 91:4 (2009), 402–431 | DOI | MR | Zbl
[9] N. G. Meyers, “Mean oscillation over cubes and Holder continuity”, Proc. Amer. Math. Soc., 15 (1964), 717–721 | MR | Zbl
[10] J. Peetre, “On convolution operators leaving $L^{p,\lambda}$ spaces invariant”, Ann. Mat. Pura Appl., 72 (1966), 295–304 | DOI | MR | Zbl
[11] M. Prats, “Sobolev regularity of the Beurling transform on planar domains”, Publ. Mat., 61 (2017), 291–336 | DOI | MR | Zbl
[12] M. Prats, X. Tolsa, “A T(P) theorem for Sobolev spaces on domains”, J. Funct. Anal., 268 (2015), 2946–2989 | DOI | MR | Zbl
[13] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970 | MR | Zbl
[14] A. V. Vasin, “A T$1$ theorem and Calderon-Zygmund operators in Campanato spaces on domains”, Math. Nachr., 292 (2019), 1392–1407 | DOI | MR | Zbl