Singular integral operators on Zygmund spaces on
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 43-51
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a bounded Lipschitz domain $D\subset \mathbb{R}^d$ and
a Calderón–Zygmund operator $T$, we study the relationship between smoothness properties of $\partial D$ and the boundedness of $T$ on the Zydmund space $\mathcal{C}_{\omega}(D)$ defined for a general growth function $\omega$.
We prove a T(P)-theorem for the Zygmund spaces,
checking the boundedness of $T$ on a finite collection of polynomials restricted to the domain.
Also, we obtain a new form of an extra cancellation property for the even Calderón–Zygmund operators in polynomial domains.
@article{ZNSL_2020_491_a2,
author = {A. V. Vasin},
title = {Singular integral operators on {Zygmund} spaces on},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {43--51},
publisher = {mathdoc},
volume = {491},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a2/}
}
A. V. Vasin. Singular integral operators on Zygmund spaces on. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 43-51. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a2/