Singular integral operators on Zygmund spaces on
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 43-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Given a bounded Lipschitz domain $D\subset \mathbb{R}^d$ and a Calderón–Zygmund operator $T$, we study the relationship between smoothness properties of $\partial D$ and the boundedness of $T$ on the Zydmund space $\mathcal{C}_{\omega}(D)$ defined for a general growth function $\omega$. We prove a T(P)-theorem for the Zygmund spaces, checking the boundedness of $T$ on a finite collection of polynomials restricted to the domain. Also, we obtain a new form of an extra cancellation property for the even Calderón–Zygmund operators in polynomial domains.
@article{ZNSL_2020_491_a2,
     author = {A. V. Vasin},
     title = {Singular integral operators on {Zygmund} spaces on},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--51},
     year = {2020},
     volume = {491},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a2/}
}
TY  - JOUR
AU  - A. V. Vasin
TI  - Singular integral operators on Zygmund spaces on
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 43
EP  - 51
VL  - 491
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a2/
LA  - ru
ID  - ZNSL_2020_491_a2
ER  - 
%0 Journal Article
%A A. V. Vasin
%T Singular integral operators on Zygmund spaces on
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 43-51
%V 491
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a2/
%G ru
%F ZNSL_2020_491_a2
A. V. Vasin. Singular integral operators on Zygmund spaces on. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 43-51. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a2/

[1] D. S. Anikonov, “On the boundedness of a singular integral operator in the space $ C^{\alpha}(\overline G)$”, Math. USSR-Sb., 33:4 (1977), 447–464 | DOI | MR | Zbl

[2] S. Campanato, “Proprieta di holderianita di alcune classi di funzioni. [Holder properties of certain function classes]”, Ann. Sc. Norm. Super. Pisa, 17:3 (1963), 175–188 | MR | Zbl

[3] R. A. DeVore, R. C. Sharpley, “Besov spaces on domains in $\mathbb{R}^d$”, Trans. Amer. Math. Soc., 335:2 (1993), 843–864 | MR | Zbl

[4] S. Janson, “Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation”, Duke Math. J., 47 (1980), 959–982 | DOI | MR | Zbl

[5] S. Janson, “On functions with condition on mean oscilation”, Ark. Mat., 14 (1976), 189–196 | DOI | MR | Zbl

[6] P. W. Jones, “Extension theorems for $\mathrm{BMO}$”, Indiana Univ. Math. J., 29 (1980), 41–66 | DOI | MR | Zbl

[7] S. Kislyakov, N. Kruglyak, Extremal problems in interpolation theory, Whitney-Besicovitch coverings, and singular integrals, Birkhauser/Springer Basel AG, 2013 | MR | Zbl

[8] J. Mateu, J. Orobitg, J. Verdera, “Extra cancellation of even Calderón-Zygmund operators and quasiconformal mappings”, J. Math. Pures Appl., (9) 91:4 (2009), 402–431 | DOI | MR | Zbl

[9] N. G. Meyers, “Mean oscillation over cubes and Holder continuity”, Proc. Amer. Math. Soc., 15 (1964), 717–721 | MR | Zbl

[10] J. Peetre, “On convolution operators leaving $L^{p,\lambda}$ spaces invariant”, Ann. Mat. Pura Appl., 72 (1966), 295–304 | DOI | MR | Zbl

[11] M. Prats, “Sobolev regularity of the Beurling transform on planar domains”, Publ. Mat., 61 (2017), 291–336 | DOI | MR | Zbl

[12] M. Prats, X. Tolsa, “A T(P) theorem for Sobolev spaces on domains”, J. Funct. Anal., 268 (2015), 2946–2989 | DOI | MR | Zbl

[13] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970 | MR | Zbl

[14] A. V. Vasin, “A T$1$ theorem and Calderon-Zygmund operators in Campanato spaces on domains”, Math. Nachr., 292 (2019), 1392–1407 | DOI | MR | Zbl