Singular integral operators on Zygmund spaces on
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 43-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a bounded Lipschitz domain $D\subset \mathbb{R}^d$ and a Calderón–Zygmund operator $T$, we study the relationship between smoothness properties of $\partial D$ and the boundedness of $T$ on the Zydmund space $\mathcal{C}_{\omega}(D)$ defined for a general growth function $\omega$. We prove a T(P)-theorem for the Zygmund spaces, checking the boundedness of $T$ on a finite collection of polynomials restricted to the domain. Also, we obtain a new form of an extra cancellation property for the even Calderón–Zygmund operators in polynomial domains.
@article{ZNSL_2020_491_a2,
     author = {A. V. Vasin},
     title = {Singular integral operators on {Zygmund} spaces on},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--51},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a2/}
}
TY  - JOUR
AU  - A. V. Vasin
TI  - Singular integral operators on Zygmund spaces on
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 43
EP  - 51
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a2/
LA  - ru
ID  - ZNSL_2020_491_a2
ER  - 
%0 Journal Article
%A A. V. Vasin
%T Singular integral operators on Zygmund spaces on
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 43-51
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a2/
%G ru
%F ZNSL_2020_491_a2
A. V. Vasin. Singular integral operators on Zygmund spaces on. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 43-51. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a2/