Littlewood–Paley–Rubio de Francia inequality for the two-parameter Walsh system
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 27-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove a version of Littlewood–Paley–Rubio de Francia inequality for the two-parameter Walsh system: for any family of disjoint rectangles $I_k = I_k^1 \times I_k^2$ in ${\mathbb{Z}_+ \times \mathbb{Z}_+}$ and a family of functions $f_k$ with Walsh spectrum inside $I_k$ the following is true $$ \left\|\sum\limits_k f_k\right\|_{L^p} \leq C_p \left\|\left(\sum\limits_{k = 1}^\infty |f_k|^2\right)^{1/2}\right\|_{L^p} , 1 < p \leq 2, $$ where $C_p$ does not depend on the choice of rectangles $\{I_k\}$ or functions $\{f_k\}$. The arguments are based on the atomic theory of two-parameter martingale Hardy spaces. In the course of the proof, we formulate a two-parametric version of the Gundy theorem on the boundedness of operators taking martingales to measurable functions, which might be of independent interest.
@article{ZNSL_2020_491_a1,
     author = {V. Borovitskiy},
     title = {Littlewood{\textendash}Paley{\textendash}Rubio de {Francia} inequality for the two-parameter {Walsh} system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {27--42},
     year = {2020},
     volume = {491},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a1/}
}
TY  - JOUR
AU  - V. Borovitskiy
TI  - Littlewood–Paley–Rubio de Francia inequality for the two-parameter Walsh system
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 27
EP  - 42
VL  - 491
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a1/
LA  - ru
ID  - ZNSL_2020_491_a1
ER  - 
%0 Journal Article
%A V. Borovitskiy
%T Littlewood–Paley–Rubio de Francia inequality for the two-parameter Walsh system
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 27-42
%V 491
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a1/
%G ru
%F ZNSL_2020_491_a1
V. Borovitskiy. Littlewood–Paley–Rubio de Francia inequality for the two-parameter Walsh system. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 27-42. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a1/

[1] J. Bourgain, “On square functions on the trigonometric system”, Bull. Soc. Math. Belg. Sér. B, 37:1 (1985), 20–26 | MR | Zbl

[2] J. Brossard, “Comparaison des “Normes” $L_p$ du Processus Croissant et de la Variable Maximale Pour Les Martingales Régulières à Deux Indices. Théorème Local Correspondant”, The Annals of Probability, 1980, 1183–1188 | DOI | MR | Zbl

[3] J. Brossard, “Régularité des martingales à deux indices et inégalités de normes”, Processus Aléatoires à Deux Indices, Springer, 1981, 91–121 | DOI | MR

[4] R. Fefferman, “Calderon-Zygmund theory for product domains: $H^p$ spaces”, Proceedings of the National Academy of Sciences, 83:4 (1986), 840–843 | DOI | MR | Zbl

[5] R. F. Gundy, “Inégalités pour martingales à un et deux indices: L'espace $H^p$”, Ecole d'été de probabilités de Saint-Flour viii-1978, 1980, 251–334 | MR | Zbl

[6] R. F. Gundy, “A decomposition for $L^1$-bounded martingales”, The Annals of Mathematical Statistics, 39:1 (1968), 134–138 | DOI | MR | Zbl

[7] J.-L. Journé, “Calderón-Zygmund operators on product spaces”, Revista matemática iberoamericana, 1:3 (1985), 55–91 | DOI | MR | Zbl

[8] S. V. Kislyakov, “Martingale transforms and uniformly convergent orthogonal series”, Journal of Soviet Mathematics, 37:5 (1987), 1276–1287 | DOI | MR | Zbl

[9] M. T. Lacey, Issues related to Rubio de Francia's Littlewood–Paley Inequality: A Survey, 2003, arXiv: math/0306417 | MR

[10] J. E. Littlewood, R. EAC Paley, “Theorems on Fourier series and power series”, Journal of the London Mathematical Society, 1:3 (1931), 230–233 | DOI | MR

[11] E. Malinnikova, N. N. Osipov, “Two Types of Rubio de Francia Operators on Triebel–Lizorkin and Besov Spaces”, Journal of Fourier Analysis and Applications, 25:3 (2019), 804–818 | DOI | MR | Zbl

[12] Ch. Métraux, “Quelques inégalités pour martingales à paramètre bidimensionnel”, Séminaire de Probabilités XII, Springer, 1978, 170–179 | MR

[13] N. Osipov, “Littlewood–Paley–Rubio de Francia inequality for the Walsh system”, St. Petersburg Mathematical Journal, 28:5 (2017), 719–726 | DOI | MR | Zbl

[14] N. N. Osipov, “The Littlewood–Paley–Rubio de Francia inequality in Morrey-Campanato spaces”, Sbornik: Mathematics, 205:7 (2014), 1004 | DOI | MR | Zbl

[15] R. EAC Paley, “A remarkable series of orthogonal functions”, Proc. London Math. Soc., 34:1 (1931), 241–279 | MR

[16] R. de Francia, L. José, “A Littlewood–Paley inequality for arbitrary intervals”, Revista Matematica Iberoamericana, 1:2 (1985), 1–14 | DOI | MR | Zbl

[17] F. Soria, “A note on a Littlewood-Paley inequality for arbitrary intervals in $\mathbb{R}^2$”, J. London Math. Soc., 2:1 (1987), 137–142 | DOI | MR | Zbl

[18] F. Weisz, “Cesaro summability of two-parameter Walsh–Fourier series”, J. Approx. Theory, 88:2 (1997), 168–192 | DOI | MR | Zbl

[19] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Springer, 2006 | MR

[20] V. Borovitskii, “Vesovoe neravenstvo Litlvuda–Peli dlya proizvolnykh pryamougolnikov v $\mathbb{R}^2$”, Algebra i analiz, 32:6 (2020)

[21] S. V. Kislyakov, “Teorema Litlvuda–Peli dlya proizvolnykh intervalov: vesovye otsenki”, Zap. nauch. semin. POMI, 355, 2008, 180–198

[22] S. V. Kislyakov, D. V. Parilov, “O teoreme Litlvuda–Peli dlya proizvolnykh intervalov”, Zap. nauch. semin. POMI, 327, 2005, 98–114 | Zbl

[23] N. N. Osipov, “Neravenstvo Litlvuda–Peli dlya proizvolnykh pryamougolnikov v $\mathbb{R}^2$ pri $0 p \leq 2$”, Algebra i analiz, 22:2 (2010), 164–184

[24] N. N. Osipov, “Odnostoronnee neravenstvo Litlvuda–Peli v $\mathbb{R}^n$ dlya $0 p \leq 2$”, Zap. nauch. semin. POMI, 376, 2010, 88–115