Littlewood--Paley--Rubio de Francia inequality for the two-parameter Walsh system
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 27-42
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove a version of Littlewood–Paley–Rubio de Francia inequality for the two-parameter Walsh system: for any family of disjoint rectangles $I_k = I_k^1 \times I_k^2$ in ${\mathbb{Z}_+ \times \mathbb{Z}_+}$ and a family of functions $f_k$ with Walsh spectrum inside $I_k$ the following is true 
$$ 
\left\|\sum\limits_k f_k\right\|_{L^p} \leq C_p \left\|\left(\sum\limits_{k = 1}^\infty |f_k|^2\right)^{1/2}\right\|_{L^p} , 1  p \leq 2, 
$$ 
where $C_p$ does not depend on the choice of rectangles $\{I_k\}$ or functions $\{f_k\}$. The arguments are based on the atomic theory of two-parameter martingale Hardy spaces. In the course of the proof, we formulate a two-parametric version of the Gundy theorem on the boundedness of operators taking martingales to measurable functions, which might be of independent interest.
			
            
            
            
          
        
      @article{ZNSL_2020_491_a1,
     author = {V. Borovitskiy},
     title = {Littlewood--Paley--Rubio de {Francia} inequality for the two-parameter {Walsh} system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {27--42},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a1/}
}
                      
                      
                    V. Borovitskiy. Littlewood--Paley--Rubio de Francia inequality for the two-parameter Walsh system. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 27-42. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a1/