Estimates for the constant in a Jackson type inequality for periodic functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 5-26
Voir la notice de l'article provenant de la source Math-Net.Ru
New estimates are established for the constant $J$ in the Jackson type inequality \begin{align*} {n}(f) \leq \frac{J(m, r, \tau)}{n^{r}}\omega_{m}(f^{(r)}, \tau/n). \end{align*} They improve previously known estimates in the case where $m \to +\infty$, $r \in \mathbb{N}$, $\tau \geq \pi$. Here $f$ is a $2\pi$-periodic continuous function, $E_{n}$ is the best approximation by trigonometric polynomials of order less than $n$, $\omega_{m}$ is the modulus of continuity of order $m$.
@article{ZNSL_2020_491_a0,
author = {M. V. Babushkin},
title = {Estimates for the constant in a {Jackson} type inequality for periodic functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--26},
publisher = {mathdoc},
volume = {491},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a0/}
}
M. V. Babushkin. Estimates for the constant in a Jackson type inequality for periodic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 5-26. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a0/