Estimates for the constant in a Jackson type inequality for periodic functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 5-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

New estimates are established for the constant $J$ in the Jackson type inequality \begin{align*} &E_{n}(f) \leq \frac{J(m, r, \tau)}{n^{r}}\omega_{m}(f^{(r)}, \tau/n). \end{align*} They improve previously known estimates in the case where $m \to +\infty$, $r \in \mathbb{N}$, $\tau \geq \pi$. Here $f$ is a $2\pi$-periodic continuous function, $E_{n}$ is the best approximation by trigonometric polynomials of order less than $n$, $\omega_{m}$ is the modulus of continuity of order $m$.
@article{ZNSL_2020_491_a0,
     author = {M. V. Babushkin},
     title = {Estimates for the constant in a {Jackson} type inequality for periodic functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--26},
     year = {2020},
     volume = {491},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a0/}
}
TY  - JOUR
AU  - M. V. Babushkin
TI  - Estimates for the constant in a Jackson type inequality for periodic functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 5
EP  - 26
VL  - 491
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a0/
LA  - ru
ID  - ZNSL_2020_491_a0
ER  - 
%0 Journal Article
%A M. V. Babushkin
%T Estimates for the constant in a Jackson type inequality for periodic functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 5-26
%V 491
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a0/
%G ru
%F ZNSL_2020_491_a0
M. V. Babushkin. Estimates for the constant in a Jackson type inequality for periodic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 48, Tome 491 (2020), pp. 5-26. http://geodesic.mathdoc.fr/item/ZNSL_2020_491_a0/

[1] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, Izd. LGU, Leningrad, 1982

[2] V. V. Zhuk, S. Yu. Pimenov, “O normakh summ Akhiezera–Kreina–Favara”, Vestnik SPbGU. Seriya 10, 4 (2006), 37–47

[3] V. V. Zhuk, Strukturnye svoistva funktsii i tochnost approksimatsii, Izd. LGU, Leningrad, 1984

[4] V. V. Zhuk, “Polunormy i moduli nepreryvnosti vysokikh poryadkov”, Trudy S.-Peterburg. matem. obschestva, 2 (1993), 116–177

[5] O. L. Vinogradov, V. V. Zhuk, “Otsenki funktsionalov s izvestnym konechnym naborom momentov cherez moduli nepreryvnosti i povedenie konstant v neravenstvakh tipa Dzheksona”, Algebra i analiz, 24:5 (2012), 1–43

[6] O. L. Vinogradov, “Tochnoe neravenstvo dlya otkloneniya summ Rogozinskogo i vtorogo modulya nepreryvnosti v prostranstve nepreryvnykh periodicheskikh funktsii”, Zap. nauchn. sem. POMI, 247, 1997, 26–45 | Zbl

[7] O. L. Vinogradov, “Uluchshenie neravenstv tipa Dzheksona dlya chetvertogo, shestogo i vosmogo modulya nepreryvnosti”, Problemy matematicheskogo analiza, 85 (2015), 59–70

[8] V. V. Zhuk, O. A. Tumka, N. A. Kozlov, “O konstantakh v neravenstvakh tipa Dzheksona dlya nailuchshikh priblizhenii periodicheskikh differentsiruemykh funktsii”, Vestnik SPbGU. Seriya 10, 1 (2015), 33–41

[9] V. V. Zhuk, V. M. Bure, “O konstantakh v obobschennoi teoreme Dzheksona”, Problemy matem. analiza, 77 (2014), 105–110

[10] M. V. Babushkin, N. Yu. Dodonov, V. V. Zhuk, “Modifitsirovannye funktsii Steklova i formuly chislennogo differentsirovaniya”, Problemy matematicheskogo analiza, 94 (2018), 21–34 | Zbl

[11] S. Foucart, Y. Kryakin, A. Shadrin, “On the exact constant in Jackson–Stechkin inequality for the uniform metric”, Constr. Approx., 29:2 (2009), 157–179 | DOI | MR | Zbl

[12] O. L. Vinogradov, V. V. Zhuk, “Otsenki funktsionalov s izvestnoi posledovatelnostyu momentov cherez otkloneniya srednikh tipa Steklova”, Zap. nauchn. sem. POMI, 383, 2010, 5–32

[13] D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, 1970 | MR | Zbl