@article{ZNSL_2020_490_a7,
author = {A. L. Smirnov and G. A. Strukov},
title = {Short sections of some bundles on the projective line},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--141},
year = {2020},
volume = {490},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a7/}
}
A. L. Smirnov; G. A. Strukov. Short sections of some bundles on the projective line. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 124-141. http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a7/
[1] Ch. C. Hanna, “Subbundles of vector bundles on the projective line”, J. Algebra, 52:2 (1978), 322–327 | DOI | MR | Zbl
[2] G. A. Strukov, Vektornye rassloeniya na arifmeticheskikh mnogoobraziyakh, Diplomnaya rabota, Sankt-Peterburgskii gosudarstvennyi universitet, 2020
[3] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981
[4] A. L. Smirnov, “Vektornye rassloeniya na $\mathbf{P}^1_{\mathbb{Z}}$ s prostymi podskokami”, Zap. nauchn. semin. POMI, 452, 2016, 202–217
[5] A. L. Smirnov, “On filtrations of vector bundles over $\mathbf{P}^1_{\mathbb{Z}}$. Arithmetic and Geometry”, London Math. Soc. Lect. Note Series, 420, Cambridge Univ. Press, 2015, 436–457 | MR | Zbl
[6] K. Okonek, M. Shnaider, Kh. Shpindler, Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1984
[7] S. S. Yakovenko, Vektornye $\mathbf{P}^1_{\mathbb{Z}}$-rassloeniya s obschim sloem $\mathcal O \oplus \mathcal O(1)$ i prostymi podskokami, Preprint POMI, 03, 2016
[8] A. L. Smirnov, S. S. Yakovenko, “Postroenie lineinoi filtratsii dlya rassloenii ranga $2$ na $\mathbf{P}^1_{\mathbb{Z}}$”, Matem. sbornik, 208 (2017), 111–128 | Zbl
[9] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, v. 2, Mir, M., 1982 | MR
[10] Yu. I. Manin, Kubicheskie formy, Nauka, M., 1972