On explicit units in Kummer's tower
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 109-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider Kummer's tower, i. e. a family of number fields obtained by means of extracting all possible radicals from a rational base. We construct a few series of units in the tower where the base is equal to two and three.
@article{ZNSL_2020_490_a6,
     author = {A. L. Smirnov},
     title = {On explicit units in {Kummer's} tower},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {109--123},
     year = {2020},
     volume = {490},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a6/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - On explicit units in Kummer's tower
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 109
EP  - 123
VL  - 490
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a6/
LA  - ru
ID  - ZNSL_2020_490_a6
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T On explicit units in Kummer's tower
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 109-123
%V 490
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a6/
%G ru
%F ZNSL_2020_490_a6
A. L. Smirnov. On explicit units in Kummer's tower. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 109-123. http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a6/

[1] H. Wada, “A Table of Fundamental Units of Purely Cubic Fields”, Proc. Japan Acad., 46:10 (1970), 1135–1140 | DOI | MR | Zbl

[2] J. Coates, R. Sujatha, Cyclotomic Fields and Zeta Values, Monographs in Mathematics, Springer, 2006 | MR | Zbl

[3] G. Robert, “Unités elliptiques et formules pour le nombre de classes des extensions abéliennnes d'un corps quadratic imaginaire”, Bull. Soc. Math., France, 36 (1973), 5–77 | MR

[4] A. L. Smirnov, “Kummerova bashnya i bolshie dzeta-funktsii”, Zap. nauchn. sem. POMI, 469, 2018, 151–159

[5] G. Shimura, Yu. Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Math. Soc. of Japan, 1961 | MR | Zbl