A purity theorem for quadratic spaces
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 98-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved a purity theorem for quadratic spaces over semi-local regular integral domain containing a field of odd characteristic. This theorem extends to the semi-local case the corresponding results proven previously by the author and by the author jointly with K. Pimenov. To get this result we extend the purity theorem of Ojanguren–Panin to this more general setting.
@article{ZNSL_2020_490_a4,
     author = {I. Panin},
     title = {A purity theorem for quadratic spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--103},
     year = {2020},
     volume = {490},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a4/}
}
TY  - JOUR
AU  - I. Panin
TI  - A purity theorem for quadratic spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 98
EP  - 103
VL  - 490
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a4/
LA  - en
ID  - ZNSL_2020_490_a4
ER  - 
%0 Journal Article
%A I. Panin
%T A purity theorem for quadratic spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 98-103
%V 490
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a4/
%G en
%F ZNSL_2020_490_a4
I. Panin. A purity theorem for quadratic spaces. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 98-103. http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a4/

[1] P. Balmer, “Derived Witt groups of a scheme”, J. Pure Appl. Algebra, 141 (1999), 101–129 | DOI | MR | Zbl

[2] P. Balmer, “Witt cohomology, Mayer-Vietoris, homotopy invariance and the Gersten conjecture”, K-Theory, 23:1 (2001), 15–30 | DOI | MR | Zbl

[3] T. Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[4] M. Ojanguren, I. Panin, “A purity theorem for the Witt group”, Ann. Sci. Ecole Norm. Sup. (4), 32:1 (1999), 71–86 | DOI | MR | Zbl

[5] Izv. Math., 83:4 (2019), 796–829 | DOI | DOI | MR | Zbl

[6] I. Panin, U. Rehmann, “A variant of a theorem by Springer”, Algebra Analyz, 19 (2007), 117–125 | MR

[7] I. Panin, “Rationally isotropic quadratic spaces are locally isotropic”, Invent. Math., 176 (2009), 397–403 | DOI | MR | Zbl

[8] I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic: II”, Documenta Mathematica, 2010, Extra Volume: Andrei A. Suslin's Sixtieth Birthday, 515–523 | MR | Zbl

[9] I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. III”, Algebra Analiz, 27:6 (2015), 234–241 | MR

[10] I. Panin, “Oriented cohomology theories of algebraic varieties”, K-Theory, 30 (2003), 265–314 | DOI | MR | Zbl

[11] D. Popescu, “General Néron desingularization and approximation”, Nagoya Math. J., 104 (1986), 85–115 | DOI | MR | Zbl

[12] S. Scully, “The Artin–Springer theorem for quadratic forms over semi-local rings with finite residue fields”, Proc. Amer. Math. Soc., 146 (2018), 1–13 | DOI | MR | Zbl

[13] R. G. Swan, “Néron–Popescu desingularization”, Algebra and Geometry, Taipei, 1995, 2, Internat. Press, Cambridge, MA, 1998, 135–192 | MR