@article{ZNSL_2020_490_a4,
author = {I. Panin},
title = {A purity theorem for quadratic spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--103},
year = {2020},
volume = {490},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a4/}
}
I. Panin. A purity theorem for quadratic spaces. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 98-103. http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a4/
[1] P. Balmer, “Derived Witt groups of a scheme”, J. Pure Appl. Algebra, 141 (1999), 101–129 | DOI | MR | Zbl
[2] P. Balmer, “Witt cohomology, Mayer-Vietoris, homotopy invariance and the Gersten conjecture”, K-Theory, 23:1 (2001), 15–30 | DOI | MR | Zbl
[3] T. Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67, American Mathematical Society, Providence, RI, 2005 | MR | Zbl
[4] M. Ojanguren, I. Panin, “A purity theorem for the Witt group”, Ann. Sci. Ecole Norm. Sup. (4), 32:1 (1999), 71–86 | DOI | MR | Zbl
[5] Izv. Math., 83:4 (2019), 796–829 | DOI | DOI | MR | Zbl
[6] I. Panin, U. Rehmann, “A variant of a theorem by Springer”, Algebra Analyz, 19 (2007), 117–125 | MR
[7] I. Panin, “Rationally isotropic quadratic spaces are locally isotropic”, Invent. Math., 176 (2009), 397–403 | DOI | MR | Zbl
[8] I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic: II”, Documenta Mathematica, 2010, Extra Volume: Andrei A. Suslin's Sixtieth Birthday, 515–523 | MR | Zbl
[9] I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. III”, Algebra Analiz, 27:6 (2015), 234–241 | MR
[10] I. Panin, “Oriented cohomology theories of algebraic varieties”, K-Theory, 30 (2003), 265–314 | DOI | MR | Zbl
[11] D. Popescu, “General Néron desingularization and approximation”, Nagoya Math. J., 104 (1986), 85–115 | DOI | MR | Zbl
[12] S. Scully, “The Artin–Springer theorem for quadratic forms over semi-local rings with finite residue fields”, Proc. Amer. Math. Soc., 146 (2018), 1–13 | DOI | MR | Zbl
[13] R. G. Swan, “Néron–Popescu desingularization”, Algebra and Geometry, Taipei, 1995, 2, Internat. Press, Cambridge, MA, 1998, 135–192 | MR