Universal karyon tilings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 49-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Universal karyon tilings $\mathcal{T}^{d}(v,\mu)$ of the real $d$-dimensional space $\mathbb{R}^{d}$ are constructed. These tilings depend on two free parameters: the star $v=\{ v_0, \ldots, v_d \}$ formed by $d + 1$ vectors $v_0, \ldots, v_d\in\mathbb{R}^{d}$, and the weight vector $\mu=( \mu_0,\mu_1, \ldots,\mu_d)\in\mathbb{R}^{d+1}$ with $\mu_k>0$ satisfying $\mu_0+\mu_1+ \ldots + \mu_d=1$. The tiling $\mathcal{T}^{d}(v,\mu)$ contains the karyon $\mathrm{Kr}=T_{0}\cup T_{1}\cup \ldots \cup T_{d} \subset\mathcal{T}(v,\mu) $ consisting of all types of parallelepipeds $T_{0},T_{1},\ldots,T_{d}$ from which the tiling $\mathcal{T}^{d}(v,\mu)$ is formed. The karyon $\mathrm{Kr}$ is a convex parallelohedron uniquely determined by the star $v$. Coordinates $\mu_k$ of the weight vector $\mu$ set the frequency of occurrence of parallelepipeds $T_{k} \in \mathrm {Kr}$ in the karyon tiling $\mathcal{T}^{d}(v,\mu)$.
@article{ZNSL_2020_490_a2,
     author = {V. G. Zhuravlev},
     title = {Universal karyon tilings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--93},
     year = {2020},
     volume = {490},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a2/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Universal karyon tilings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 49
EP  - 93
VL  - 490
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a2/
LA  - ru
ID  - ZNSL_2020_490_a2
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Universal karyon tilings
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 49-93
%V 490
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a2/
%G ru
%F ZNSL_2020_490_a2
V. G. Zhuravlev. Universal karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 49-93. http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a2/

[1] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 71:2 (2007), 89–122 | MR | Zbl

[2] G. Rauzy, “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | DOI | MR | Zbl

[3] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zapiski nauchnykh seminarov POMI, 322, 2005, 83–106 | Zbl

[4] V. G. Zhuravlev, A. V. Maleev, “Posloinyi rost kvaziperiodicheskogo razbieniya Rozi”, Kristallografiya, 52:2 (2007), 204–210

[5] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauch. semin. POMI, 445, 2016, 33–92

[6] V. G. Zhuravlev, “Lokalnyi algoritm postroeniya proizvodnykh razbienii dvumernogo tora”, Zap. nauch. semin. POMI, 479, 2019, 85–120

[7] P. Arnoux, V. Berthé, S. Ito, “Discrete planes, $\mathbb{Z}^2$-actions, Jacobi-Perron algorithm and substitutions”, Ann. Inst. Fourier (Grenoble), 52:2 (2002), 305–349 | DOI | MR | Zbl

[8] V. Berthé, L. Vuillon, “Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences”, Discrete Math., 223 (2000), 27–53 | DOI | MR | Zbl

[9] V. Berthé, A. Siegel, J. Thuswaldner, “Substitutions, Rauzy fractals and tilings”, Combinatorics, Automata and Number Theory, Encyclopedia Math. Appl., 135, Cambridge Univ. Press, Cambridge, 2010, 248–323 | MR | Zbl

[10] S. Ito, M. Ohtsuki, “Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms”, Tokyo J. Math., 16:2 (1993), 441–472 | DOI | MR | Zbl

[11] S. Ito, M. Ohtsuki, “Parallelogram tilings and Jacobi-Perron algorithm”, Tokyo J. Math., 17:1 (1994), 33–58 | DOI | MR | Zbl

[12] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 392, 2011, 95–145

[13] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, v. 1, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102

[14] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953 | MR

[15] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952 | MR