$\mathcal{L}$-algorithm for approximating Diophantine systems of linear forms
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 25-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proposed $\mathcal{L}$ - algorithm for constructing an infinite sequence of integer solutions of linear inequality systems of $ d + 1 $ variable. Solutions are obtained using recurrence relations of order $d + 1$. The approach speed is carried out with the diophantine exponent $\theta = \frac {m} {n} - \varrho $ where $ 1 \leq n \leq d $ is the number of inequalities, $ m = d + 1-n $ — the number of free variables and the deviation $ \varrho> 0 $ can be made arbitrarily small due to a suitable choice of the recurrence relation.
@article{ZNSL_2020_490_a1,
     author = {V. G. Zhuravlev},
     title = {$\mathcal{L}$-algorithm for approximating {Diophantine} systems of linear forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {25--48},
     year = {2020},
     volume = {490},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - $\mathcal{L}$-algorithm for approximating Diophantine systems of linear forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 25
EP  - 48
VL  - 490
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a1/
LA  - ru
ID  - ZNSL_2020_490_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T $\mathcal{L}$-algorithm for approximating Diophantine systems of linear forms
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 25-48
%V 490
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a1/
%G ru
%F ZNSL_2020_490_a1
V. G. Zhuravlev. $\mathcal{L}$-algorithm for approximating Diophantine systems of linear forms. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 25-48. http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a1/

[1] V. Shmidt, Diofantovy priblizheniya, Mir, M., 1983

[2] V. G. Zhuravlev, Yadernye tsepnye drobi, VlGU, Vladimir, 2019

[3] V. G. Zhuravlev, “Lokalizovannye edinitsy Pizo i sovmestnye priblizheniya algebraicheskikh chisel”, Zap. nauchn. semin. POMI, 458, 2017, 104–134

[4] V. G. Zhuravlev, “Diofantovy priblizheniya lineinykh form”, Zap. nauchn. semin. POMI, 2020, 1–18 (to appear)

[5] T.W. Cusick, “Diophantine Approximation of Ternary Linear Forms”, Math. Somp., 25:113 (1971), 163–180 | MR | Zbl

[6] T.W. Cusick, “Diophantine Approximation of Ternary Linear Forms. II”, Math. Comp., 26:120 (1972), 977–993 | DOI | MR | Zbl

[7] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Trete izd., Nauka, M., 1985 | MR

[8] Zhuravlev V. G., “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 1–20

[9] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 168–195