@article{ZNSL_2020_490_a1,
author = {V. G. Zhuravlev},
title = {$\mathcal{L}$-algorithm for approximating {Diophantine} systems of linear forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {25--48},
year = {2020},
volume = {490},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a1/}
}
V. G. Zhuravlev. $\mathcal{L}$-algorithm for approximating Diophantine systems of linear forms. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 25-48. http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a1/
[1] V. Shmidt, Diofantovy priblizheniya, Mir, M., 1983
[2] V. G. Zhuravlev, Yadernye tsepnye drobi, VlGU, Vladimir, 2019
[3] V. G. Zhuravlev, “Lokalizovannye edinitsy Pizo i sovmestnye priblizheniya algebraicheskikh chisel”, Zap. nauchn. semin. POMI, 458, 2017, 104–134
[4] V. G. Zhuravlev, “Diofantovy priblizheniya lineinykh form”, Zap. nauchn. semin. POMI, 2020, 1–18 (to appear)
[5] T.W. Cusick, “Diophantine Approximation of Ternary Linear Forms”, Math. Somp., 25:113 (1971), 163–180 | MR | Zbl
[6] T.W. Cusick, “Diophantine Approximation of Ternary Linear Forms. II”, Math. Comp., 26:120 (1972), 977–993 | DOI | MR | Zbl
[7] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Trete izd., Nauka, M., 1985 | MR
[8] Zhuravlev V. G., “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 1–20
[9] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 168–195