Diophantine approximations of linear forms
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 5-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Diophantine approximations of linear combinations with real algebraic numbers of arbitrary degree are considered. Using the recurrence relation it is possible to generate an infinite sequence of integer approximations of the linear forms. We prove that the resulting Diophantine approximations are the best relative to some polyhedral norms that are ray functions or the Minkowski functionals.
@article{ZNSL_2020_490_a0,
     author = {V. G. Zhuravlev},
     title = {Diophantine approximations of linear forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--24},
     year = {2020},
     volume = {490},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a0/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Diophantine approximations of linear forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 5
EP  - 24
VL  - 490
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a0/
LA  - ru
ID  - ZNSL_2020_490_a0
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Diophantine approximations of linear forms
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 5-24
%V 490
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a0/
%G ru
%F ZNSL_2020_490_a0
V. G. Zhuravlev. Diophantine approximations of linear forms. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 3, Tome 490 (2020), pp. 5-24. http://geodesic.mathdoc.fr/item/ZNSL_2020_490_a0/

[1] V. Shmidt, Diofantovy priblizheniya, Mir, M., 1983

[2] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauch. semin. POMI, 449, 2016, 168–195

[3] V. G. Zhuravlev, Yadernye tsepnye drobi, VlGU, Vladimir, 2019

[4] T. W. Cusick, “Diophantine Approximation of Ternary Linear Forms”, Mathematics of computation, 25:113 (1971), 163–180 | DOI | MR | Zbl

[5] T. W. Cusick, “Diophantine Approximation of Ternary Linear Forms. II”, Mathematics of computation, 26:120 (1972), 977–993 | DOI | MR | Zbl

[6] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Trete izd., Nauka, M., 1985 | MR

[7] V. G. Zhuravlev, “Lokalizovannye edinitsy Pizo i sovmestnye priblizheniya algebraicheskikh chisel”, Zap. nauch. semin. POMI, 458, 2017, 104–134

[8] Dzh. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, Iz-vo inostrannoi literatury, M., 1961

[9] Dzh. V. S. Kassels, Vvedenie v geometriyu chisel, Mir, M., 1965 | MR