Multiplicity of positive solutions for the generalized Hénon equation with fractional Laplacian
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 207-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the equation $(-\Delta)^s u=|x|^{\alpha}|u|^{q-2}u$ in the unit ball. We show that there exist arbitratily many nonequivalent positive solutions for $2 and sufficiently large $\alpha$. Also the existence of a radial solution for some supercritical values of the $q$ and sufficiently large $\alpha$ is proved.
@article{ZNSL_2020_489_a9,
     author = {A. P. Shcheglova},
     title = {Multiplicity of positive solutions for the generalized {H\'enon} equation with fractional {Laplacian}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--224},
     year = {2020},
     volume = {489},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a9/}
}
TY  - JOUR
AU  - A. P. Shcheglova
TI  - Multiplicity of positive solutions for the generalized Hénon equation with fractional Laplacian
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 207
EP  - 224
VL  - 489
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a9/
LA  - ru
ID  - ZNSL_2020_489_a9
ER  - 
%0 Journal Article
%A A. P. Shcheglova
%T Multiplicity of positive solutions for the generalized Hénon equation with fractional Laplacian
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 207-224
%V 489
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a9/
%G ru
%F ZNSL_2020_489_a9
A. P. Shcheglova. Multiplicity of positive solutions for the generalized Hénon equation with fractional Laplacian. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 207-224. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a9/

[1] C. V. Coffman, “A nonlinear boundary value problem with many positive solutions”, J. Diff. Eq., 54 (1984), 429–437 | DOI | MR | Zbl

[2] Y. Y. Li, “Existence of many positive solutions of semilinear elliptic equations on annulus”, J. Diff. Eq., 83 (1990), 348–367 | DOI | MR | Zbl

[3] J. Byeon, “Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli”, J. Diff. Eq., 136 (1997), 136–165 | DOI | MR | Zbl

[4] A. I. Nazarov, “O resheniyakh zadachi Dirikhle dlya uravneniya, vklyuchayuschego $p$-laplasian, v sfericheskom sloe”, Trudy SPbMO, 10 (2004), 33–62

[5] A. P. Scheglova, “Mnozhestvennost reshenii odnoi kraevoi zadachi s nelineinym usloviem Neimana”, Probl. mat. analiza, 30 (2005), 121–144 | MR | Zbl

[6] D. Smets, M. Willem, J. Su, “Non-radial ground states for the Hénon equation”, Commun. Contemp. Math., 4:3 (2002), 467–480 | DOI | MR | Zbl

[7] A. I. Nazarov, “Ob “odnomernosti” ekstremali v neravenstve Fridrikhsa dlya sfericheskogo i ploskogo sloya”, Probl. mat. analiza, 20 (2000), 171–190 | Zbl

[8] S. B. Kolonitskii, A. I. Nazarov, “Multiplicity of solutions to the Dirichlet problem for generalized Hénon equation”, J. of Math. Sc., 144:6 (2007), 4624–4644 | DOI | MR | Zbl

[9] M. Hénon, “Numerical experiments on the stability of spherical stellar systems”, Astronomy Astrophysics, 24 (1973), 229–238

[10] K. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[11] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i nroizvodnye drobnogo poryadka i nekotorye ikh nrilozheniya, Nauka i tekhnika, Minsk, 1987

[12] R. Musina, A. I. Nazarov, “On fractional Laplacians”, Comm. Part. Diff. Eq., 39:9 (2014), 1780–1790 | DOI | MR | Zbl

[13] R. Musina, A. I. Nazarov, “On the Sobolev and Hardy constants for the fractional Navier Laplacian”, Nonlinear Analysis: Theory, Methods and Applications, 121 (2015), 123–129 | DOI | MR | Zbl

[14] N. S. Ustinov, “Mnozhestvennost reshenii kraevykh zadach s drobnymi laplasianami Dirikhle i Nave”, Zap. nauchn. semin. POMI, 459, 2017, 104–126

[15] S. V. Ivanov, A. I. Nazarov, “O teoremakh vlozheniya Soboleva s vesom dlya funktsii s simmetriyami”, Algebra i analiz, 18:1 (2006), 108–123

[16] A. P. Scheglova, “Zadacha Neimana dlya obobschennogo uravneniya Khenona”, Probl. mat. anal., 95 (2018), 103–114

[17] R. S. Palais, “The principle of symmetric criticality”, Comm. in Math. Phys., 69 (1979), 19–30 | DOI | MR | Zbl

[18] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, “Regularity of radial extremal solutions for some non-local semilinear equations”, Comm. Part. Diff. Eqs., 36:8 (2011), 1353–1384 | DOI | MR | Zbl

[19] A. Iannizzotto, S. Mosconi, M. Squassina, “$H^s$ versus $C^0$-weighted minimizers”, NoDEA Nonlinear Differential Equations Appl., 22:3 (2015), 477–497 | DOI | MR | Zbl