Multiplicity of positive solutions for the generalized H\'enon equation with fractional Laplacian
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 207-224

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equation $(-\Delta)^s u=|x|^{\alpha}|u|^{q-2}u$ in the unit ball. We show that there exist arbitratily many nonequivalent positive solutions for $2$ and sufficiently large $\alpha$. Also the existence of a radial solution for some supercritical values of the $q$ and sufficiently large $\alpha$ is proved.
@article{ZNSL_2020_489_a9,
     author = {A. P. Shcheglova},
     title = {Multiplicity of positive solutions for the generalized {H\'enon} equation with fractional {Laplacian}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--224},
     publisher = {mathdoc},
     volume = {489},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a9/}
}
TY  - JOUR
AU  - A. P. Shcheglova
TI  - Multiplicity of positive solutions for the generalized H\'enon equation with fractional Laplacian
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 207
EP  - 224
VL  - 489
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a9/
LA  - ru
ID  - ZNSL_2020_489_a9
ER  - 
%0 Journal Article
%A A. P. Shcheglova
%T Multiplicity of positive solutions for the generalized H\'enon equation with fractional Laplacian
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 207-224
%V 489
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a9/
%G ru
%F ZNSL_2020_489_a9
A. P. Shcheglova. Multiplicity of positive solutions for the generalized H\'enon equation with fractional Laplacian. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 207-224. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a9/