On a toy-model related to the Navier–Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 173-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we consider a parabolic toy-model for the incompressible Navier–Stokes system. This model, as we shall see below, shares a lot of similar features with the incompressible model; among which the energy inequality, the scaling symmetry, and it is also supercritical in $3$D. Our goal is to establish some regularity results for this toy-model in order to get, if possible, better insight to the standard Navier–Stokes system. We also prove here, in a direct manner, a Caffarelli–Kohn–Nirenberg type result for our model. Finally, taking advantage of the absence of the divergence-free constraint, we are able to study this model in the radially symmetric setting for which we are able to establish full regularity.
@article{ZNSL_2020_489_a8,
     author = {F. Hounkpe},
     title = {On a toy-model related to the {Navier{\textendash}Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--206},
     year = {2020},
     volume = {489},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a8/}
}
TY  - JOUR
AU  - F. Hounkpe
TI  - On a toy-model related to the Navier–Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 173
EP  - 206
VL  - 489
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a8/
LA  - en
ID  - ZNSL_2020_489_a8
ER  - 
%0 Journal Article
%A F. Hounkpe
%T On a toy-model related to the Navier–Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 173-206
%V 489
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a8/
%G en
%F ZNSL_2020_489_a8
F. Hounkpe. On a toy-model related to the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 173-206. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a8/

[1] G. Seregin, L. Silvestre, V. Sverak, “On devergence-free drifts”, J. Diff. Equ., 252 (2012), 505–540 | DOI | MR | Zbl

[2] H. Koch, G. Tataru, “Well-posedness for the Navier–Stokes equations”, Adv. Math., 157 (2001), 22–35 | DOI | MR | Zbl

[3] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., XXXV (1982), 771–831 | DOI | MR | Zbl

[4] F.-H. Lin, “A New Proof of the Caffarelli–Kohn–Nirenberg Theorem”, Comm. Pure Appl. Math., 51 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] I. Gallagher, M. Paicu, “Remarks on the Blow-up of Solutions to a Toy model for the Navier–Stokes Equations”, Proc. Amer. Math. Soc., 137 (2009), 2075–2083 | DOI | MR | Zbl

[6] M. Giaquinta, M. Struwe, “On the partial regularity of weak solutions of nonlinear parabolic systems”, Math. Z., 179 (1982), 437–451 | DOI | MR | Zbl

[7] S. Montgomery-Smith, “Finite Time Blow-up for a Navier–Stokes like Equation”, Proc. Amer. Math. Soc., 129 (2001), 3025–3029 | DOI | MR | Zbl

[8] W. Rusin, “Incompressible 3D Navier–Stokes Equations as a Limit of a Nonlinear Parabolic System”, Journal of Mathematical Fluid Mechanics, 14:2 (2012), 383–405 | DOI | MR | Zbl

[9] G. Seregin, “Differential Properties of Weak Solutions of the Navier–Stokes Equations”, St. Petersburg Math. J., 14:1 (2003), 1–33 | MR

[10] G. Seregin, “On a Reverse Hölder Inequality for a Class of Suitable Weak Solutions to the Navier–Stokes Equations”, Zap. Nauchn. Semin. POMI, 362, 2008, 325–336 | MR

[11] G. Seregin, Lecture Notes on Regularity Theory for the Navier–Stokes Equations, World Scientific, 2014 | MR

[12] T. Tao, “Finite Time Blowup for an Averaged Three-dimensional Navier–Stokes Equation”, J. Amer. Math. Soc., 29 (2016), 601–674 | DOI | MR | Zbl

[13] G. Seregin, V. Šverák, “On a bounded shear flow in half-space”, Zap. Nauchn. Semin. POMI, 385, 2010, 200–205 | MR

[14] L. Escauriaza, G. Seregin, V. Šverák, “$L_{3,\infty}$-solutions of the Navier–Stokes Equations and Backward Uniqueness”, Russian Mathematical Surveys, 58:2 (2003), 211–250 | DOI | MR | Zbl

[15] D. Li, Ya. Sinai, “Blow ups of Complex Solutions of the 3D Navier–Stokes System and Renormalization Group method”, J. Eur. Math. Soc., 10:2 (2008), 267–313 | MR | Zbl

[16] P. Plechác, V. Šverák, “Singular and Regular Solutions of a Nonlinear Parabolic System”, Nonlinearity, 16 (2003), 2083–2097 | DOI | MR | Zbl