@article{ZNSL_2020_489_a7,
author = {E. Frolova and Y. Shibata},
title = {On the maximal $L_p$-$L_q$ regularity theorem for the linearized electro-magnetic field equations with interface conditions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {130--172},
year = {2020},
volume = {489},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a7/}
}
TY - JOUR AU - E. Frolova AU - Y. Shibata TI - On the maximal $L_p$-$L_q$ regularity theorem for the linearized electro-magnetic field equations with interface conditions JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 130 EP - 172 VL - 489 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a7/ LA - en ID - ZNSL_2020_489_a7 ER -
%0 Journal Article %A E. Frolova %A Y. Shibata %T On the maximal $L_p$-$L_q$ regularity theorem for the linearized electro-magnetic field equations with interface conditions %J Zapiski Nauchnykh Seminarov POMI %D 2020 %P 130-172 %V 489 %U http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a7/ %G en %F ZNSL_2020_489_a7
E. Frolova; Y. Shibata. On the maximal $L_p$-$L_q$ regularity theorem for the linearized electro-magnetic field equations with interface conditions. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 130-172. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a7/
[1] H. Amann, Linear and Quasilinear Parabolic Problems, v. I, Birkhäuser, Basel, 1995 | MR | Zbl
[2] J. Bourgain, “Vector-valued singular integrals and the $H^1$-BMO duality”, Probability Theory and Harmonic Analysis, ed. D. Borkholder, Marcel Dekker, New York, 1986, 1–19 | MR | Zbl
[3] R. Denk, M. Hieber, J. Pruess, “$\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type”, Memoirs of AMS, 166, no. 788, 2003 | DOI | MR
[4] R. Denk, M. Hieber, J. Pruess, “Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Zeitschrift, 257 (2007), 193–224 | DOI | MR | Zbl
[5] R. Denk, R. Schnaubelt, “A structurally damped plate equations with Dirichlet–Neumann boundary conditions”, J. Differ. Equations, 259:4 (2015), 1323–1353 | DOI | MR | Zbl
[6] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Modern Geometry. Methods and Applications, Nauka, M., 1986 | MR | Zbl
[7] Y. Enomoto, Y. Shibata, “On the $\mathcal{R}$-sectoriality and the initial boundary value problem for the viscous compressible fluid flow”, Funkcial. Ekvac., 56:3 (2013), 441–505 | DOI | MR | Zbl
[8] Y. Enomoto, L. von Below, Y. Shibata, “On some free boundary problem for a compressible barotropic viscous fluid flow”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 60:1 (2014), 55–89 | MR | Zbl
[9] E. V. Frolova, “Linearization of a free boundary problem of magnetohydrodynamics”, J. Math. Sci., New York, 235:3 (2018), 322–333 | DOI | MR | Zbl
[10] N. V. Zhitarashu, “Schauder estimates and solvability of general boundary value problems for general parabolic systems with discontinuous coefficients”, DAN SSSR, 119:3 (1966), 511–514 | MR
[11] N. V. Zhitarashu, S. D. Eidelman, Parabolic boundary value problems, Kishinev, 1992 | MR | Zbl
[12] S. Maryani, H. Saito, “On the $\mathcal{R}$-boundedness of solution operator families for two-phase Stokes resolvent equations”, Diff. Int. Eqns., 30:1-2 (2017), 1–52 | MR | Zbl
[13] S. G. Mikhlin, “On the multipliers of Fourier integrals”, Dokl. Akad. Nauk SSSR (N.S.), 109:4 (1956), 701–703 | MR | Zbl
[14] M. Padula, V. A. Solonnikov, “On the free boundary problem of magnetohydrodynamics”, J. Math. Sci., New York, 178:3 (2011), 313–344 | DOI | MR | Zbl
[15] J. Pruess, G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Birkhauser Monographs in Mathematics, 2016 | DOI | MR | Zbl
[16] Y. Shibata, “Generalized resolvent estimates of the Stokes equations with first order boundary condition in a general domain”, J. Math. Fluid Mech., 15:1 (2013), 1–40 | DOI | MR | Zbl
[17] Y. Shibata, “On the $\mathcal{R}$-boundedness of solution operators for the Stokes equations with free boundary condition”, Dif. Integral Equations, 27:3-4 (2014), 313–368 | MR | Zbl
[18] Y. Shibata, “On the $\mathcal{R}$-bounded solution operators in the study of free boundary problem for the Navier-Stokes equations”, Mathematical Fluid Dynamics, Present and Futurex (Tokyo, Japan, November 2014), Springer Proceedings in Mathematics Statistics, 183, eds. Y. Shibata, Y. Suzuki, 2016, 203–285 | DOI | MR | Zbl
[19] Y. Shibata and S. Shimizu, “On the $L_p$-$L_q$ maximal regularity of the Stokes problem with first order boundary condition; Model Problem”, J. Math. Soc. Japan, 64:2 (2012), 561–626 | DOI | MR | Zbl
[20] V. A. Solonnikov, E. V. Frolova, “Solvability of a free boundary problem of magnetohydrodynamics in an infinite time intergal”, J. Math. Sci., New York, 195:1 (2013), 76–97 | DOI | MR | Zbl
[21] V. A. Solonnikov, “$L_p$-theory free boundary problems of magnetohydrodynamics in simply connected domains”, Proc. the St. Petersburg Mathematical Society, 15 (2014), 245–270 | MR
[22] V. A. Solonnikov, “$L_p$-estimates of a solution of a linear problem arising in magnetohydrodynamics”, Algebra i Analiz, 23:1 (2011), 232–254 | MR
[23] V. A. Solonnikov, “$L_p$-theory of the problem of motion of two incompressible capillary fluids in a container”, Probl. Mat. Anal., 75 (2014), 93–152 | MR | Zbl
[24] H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Pure and Applied Math. A Program of Monographs, Textbooks, and Lecture Notes, Marcel Dekker, Inc., New York–Basel, 1997 | MR | Zbl
[25] L. R. Volevich, “Solvability of boundary value problems for general elliptic systems”, Mat. Sb., 68:3 (1965), 373–416 | MR | Zbl
[26] L. Weis, “Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity”, Math. Ann., 319 (2001), 735–758 | DOI | MR | Zbl