On generation of an analytic in a sector resolving operators family for a distributed order equation
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 113-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate the unique solvability of the Cauchy problem for a class of differential equations of a distributed order not greater than one with an unbounded operator in a Banach space. The necessary and sufficient conditions for the existence of an analytic in the sector resolving family of operators for the homogeneous equation are obtained. Two versions of the theorem on the unique solvability of the Cauchy problem for the corresponding inhomogeneous equation are proved: with the condition of extra smoothness in spatial variables (the condition of continuity in the graph norm of the unbounded operator) functions in the right-hand side of the equation and its increased smoothness in the time variable (condition of Hölder continuity with respect to time). The results are obtained using the Laplace transform theory and represent the extension to the case of distributed order equations of some results of the analytical theory of operator semigroups and its generalizations to the case of integral equations, fractional differential equations. Abstract results are used in the study of a class of initial boundary value problems for equations with polynomials of an elliptic differential operator with respect to spatial variables.
@article{ZNSL_2020_489_a6,
     author = {V. E. Fedorov},
     title = {On generation of an analytic in a sector resolving operators family for a distributed order equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--129},
     year = {2020},
     volume = {489},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a6/}
}
TY  - JOUR
AU  - V. E. Fedorov
TI  - On generation of an analytic in a sector resolving operators family for a distributed order equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 113
EP  - 129
VL  - 489
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a6/
LA  - ru
ID  - ZNSL_2020_489_a6
ER  - 
%0 Journal Article
%A V. E. Fedorov
%T On generation of an analytic in a sector resolving operators family for a distributed order equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 113-129
%V 489
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a6/
%G ru
%F ZNSL_2020_489_a6
V. E. Fedorov. On generation of an analytic in a sector resolving operators family for a distributed order equation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 113-129. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a6/

[1] A. M. Nakhushev, “O polozhitelnosti operatorov nepreryvnogo i diskretnogo differentsirovaniya i integrirovaniya vesma vazhnykh v drobnom ischislenii i v teorii uravnenii smeshannogo tipa”, Differents. uravneniya, 34:1 (1998), 101–109 | MR | Zbl

[2] M. Caputo, “Mean fractional order derivatives. Differential equations and filters”, Annali dell'Universita di Ferrara. Sezione VII. Scie. Math., XLI (1995), 73–84 | MR | Zbl

[3] M. Caputo, “Distributed order differential equations modeling dielectric induction and diffusion”, Fract. Calcul. Appl. Analis., 4 (2001), 421–442 | MR | Zbl

[4] C. F. Lorenzo, T. T. Hartley, “Variable order and distributed order fractional operators”, Nonlinear Dynamics, 29 (2002), 57–98 | DOI | MR | Zbl

[5] M. Sokolov, A. V. Chechkin, J. Klafter, “Distributed-order fractional kinetics”, Act. Phys. Polonica B, 35 (2004), 1323–1341

[6] R. L. Bagley, P. J. Torvik, “On the existence of the order domain and the solution of distributed order equations. Part 1”, International J. Appl. Math., 2:7 (2000), 865–882 | MR | Zbl

[7] R. L. Bagley, P. J. Torvik, “On the existence of the order domain and the solution of distributed order equations. Part 2”, International J. Appl. Math., 2:8 (2000), 965–987 | MR | Zbl

[8] A. V. Pskhu, “K teorii operatora integro-differentsirovaniya kontinualnogo poryadka”, Differents. uravneniya, 40:1 (2004), 120–127 | MR | Zbl

[9] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[10] T. M. Atanacković, L. Oparnica, S. Pilipović, “On a nonlinear distributed order fractional differential equation”, J. Math. Analis. Appl., 328 (2007), 590–608 | DOI | MR | Zbl

[11] Z. Jiao, Y. Chen, I. Podlubny, Distributed-order dynamic system. Stability, simulations, applications and perspectives, Springer-Verlag, London, 2012 | MR

[12] S. Umarov, R. Gorenflo, “Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations”, Zeitschrift für Analysis und ihre Anwendungen, 24 (2005), 449–466 | MR | Zbl

[13] A. N. Kochubei, “Distributed order calculus and equations of ultraslow diffusion”, J. Math. Analis. Appl., 340 (2008), 252–280 | DOI | MR

[14] K. Diethelm, N. J. Ford, “Numerical solution methods for distributed order time fractional diffusion equation”, Fract. Calc. Appl. Analis., 4 (2001), 531–542 | MR | Zbl

[15] K. Diethelm, N. Ford, A. D. Freed, Y. Luchko, “Algorithms for the fractional calculus: A selection of numerical methods”, Comput. Meth. Appl. Mechanics and Engineering, 194:6-8 (2003), 743–773 | DOI | MR

[16] E. M. Streletskaya, V. E. Fedorov, A. Debush, “Zadacha Koshi dlya uravneniya raspredelennogo poryadka v banakhovom prostranstve”, Mat. zametki SVFU, 25:1 (2018), 63–72 | Zbl

[17] V. E. Fedorov, E. M. Streletskaya, “Initial-value problems for linear distributed-order differential equations in Banach spaces”, Electron. J. Differential Equations, 2018:176 (2018), 1–17 | MR | Zbl

[18] G. A. Sviridyuk, V. E. Fedorov, Linear sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston, 2003 | MR | Zbl

[19] E. Hille, R. S. Phillips, Functional analysis and semi-groups, American Mathematical Society, Providence, 1957 | MR

[20] M. Z. Solomyak, “Primenenie teorii polugrupp k issledovaniyu differentsialnykh uravnenii v prostranstvakh Banakha”, Dokl. AN SSSR, 122:5 (1958), 766–769 | Zbl

[21] J. Prüss, Evolutionary Integral Equations and Applications, Springer-Verlag, Basel, 1993 | MR

[22] M. Kostić, Abstract Volterra integro-differential equations, CRC Press, Boca Raton, 2015 | MR | Zbl

[23] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, PhD Thesis, Eindhoven University of Technology, University Press Facilities, Eindhoven, 2001 | MR | Zbl

[24] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Springer Basel AG, Basel, 2011 | MR

[25] H. Triebel, Interpolation theory. Function spaces. Differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1977 | MR