@article{ZNSL_2020_489_a6,
author = {V. E. Fedorov},
title = {On generation of an analytic in a sector resolving operators family for a distributed order equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {113--129},
year = {2020},
volume = {489},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a6/}
}
V. E. Fedorov. On generation of an analytic in a sector resolving operators family for a distributed order equation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 113-129. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a6/
[1] A. M. Nakhushev, “O polozhitelnosti operatorov nepreryvnogo i diskretnogo differentsirovaniya i integrirovaniya vesma vazhnykh v drobnom ischislenii i v teorii uravnenii smeshannogo tipa”, Differents. uravneniya, 34:1 (1998), 101–109 | MR | Zbl
[2] M. Caputo, “Mean fractional order derivatives. Differential equations and filters”, Annali dell'Universita di Ferrara. Sezione VII. Scie. Math., XLI (1995), 73–84 | MR | Zbl
[3] M. Caputo, “Distributed order differential equations modeling dielectric induction and diffusion”, Fract. Calcul. Appl. Analis., 4 (2001), 421–442 | MR | Zbl
[4] C. F. Lorenzo, T. T. Hartley, “Variable order and distributed order fractional operators”, Nonlinear Dynamics, 29 (2002), 57–98 | DOI | MR | Zbl
[5] M. Sokolov, A. V. Chechkin, J. Klafter, “Distributed-order fractional kinetics”, Act. Phys. Polonica B, 35 (2004), 1323–1341
[6] R. L. Bagley, P. J. Torvik, “On the existence of the order domain and the solution of distributed order equations. Part 1”, International J. Appl. Math., 2:7 (2000), 865–882 | MR | Zbl
[7] R. L. Bagley, P. J. Torvik, “On the existence of the order domain and the solution of distributed order equations. Part 2”, International J. Appl. Math., 2:8 (2000), 965–987 | MR | Zbl
[8] A. V. Pskhu, “K teorii operatora integro-differentsirovaniya kontinualnogo poryadka”, Differents. uravneniya, 40:1 (2004), 120–127 | MR | Zbl
[9] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.
[10] T. M. Atanacković, L. Oparnica, S. Pilipović, “On a nonlinear distributed order fractional differential equation”, J. Math. Analis. Appl., 328 (2007), 590–608 | DOI | MR | Zbl
[11] Z. Jiao, Y. Chen, I. Podlubny, Distributed-order dynamic system. Stability, simulations, applications and perspectives, Springer-Verlag, London, 2012 | MR
[12] S. Umarov, R. Gorenflo, “Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations”, Zeitschrift für Analysis und ihre Anwendungen, 24 (2005), 449–466 | MR | Zbl
[13] A. N. Kochubei, “Distributed order calculus and equations of ultraslow diffusion”, J. Math. Analis. Appl., 340 (2008), 252–280 | DOI | MR
[14] K. Diethelm, N. J. Ford, “Numerical solution methods for distributed order time fractional diffusion equation”, Fract. Calc. Appl. Analis., 4 (2001), 531–542 | MR | Zbl
[15] K. Diethelm, N. Ford, A. D. Freed, Y. Luchko, “Algorithms for the fractional calculus: A selection of numerical methods”, Comput. Meth. Appl. Mechanics and Engineering, 194:6-8 (2003), 743–773 | DOI | MR
[16] E. M. Streletskaya, V. E. Fedorov, A. Debush, “Zadacha Koshi dlya uravneniya raspredelennogo poryadka v banakhovom prostranstve”, Mat. zametki SVFU, 25:1 (2018), 63–72 | Zbl
[17] V. E. Fedorov, E. M. Streletskaya, “Initial-value problems for linear distributed-order differential equations in Banach spaces”, Electron. J. Differential Equations, 2018:176 (2018), 1–17 | MR | Zbl
[18] G. A. Sviridyuk, V. E. Fedorov, Linear sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston, 2003 | MR | Zbl
[19] E. Hille, R. S. Phillips, Functional analysis and semi-groups, American Mathematical Society, Providence, 1957 | MR
[20] M. Z. Solomyak, “Primenenie teorii polugrupp k issledovaniyu differentsialnykh uravnenii v prostranstvakh Banakha”, Dokl. AN SSSR, 122:5 (1958), 766–769 | Zbl
[21] J. Prüss, Evolutionary Integral Equations and Applications, Springer-Verlag, Basel, 1993 | MR
[22] M. Kostić, Abstract Volterra integro-differential equations, CRC Press, Boca Raton, 2015 | MR | Zbl
[23] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, PhD Thesis, Eindhoven University of Technology, University Press Facilities, Eindhoven, 2001 | MR | Zbl
[24] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Springer Basel AG, Basel, 2011 | MR
[25] H. Triebel, Interpolation theory. Function spaces. Differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1977 | MR