Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 96-112
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove local in time solvability of the free boundary problem for two phase viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$ with $p>2$, $l\in(1/p,2/p)$.
			
            
            
            
          
        
      @article{ZNSL_2020_489_a5,
     author = {V. A. Solonnikov},
     title = {Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {96--112},
     publisher = {mathdoc},
     volume = {489},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a5/}
}
                      
                      
                    TY  - JOUR
AU  - V. A. Solonnikov
TI  - Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 96
EP  - 112
VL  - 489
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a5/
LA  - en
ID  - ZNSL_2020_489_a5
ER  - 
                      
                      
                    %0 Journal Article
%A V. A. Solonnikov
%T Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 96-112
%V 489
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a5/
%G en
%F ZNSL_2020_489_a5
                      
                      
                    V. A. Solonnikov. Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 96-112. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a5/