@article{ZNSL_2020_489_a5,
author = {V. A. Solonnikov},
title = {Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {96--112},
year = {2020},
volume = {489},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a5/}
}
TY - JOUR
AU - V. A. Solonnikov
TI - Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2020
SP - 96
EP - 112
VL - 489
UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a5/
LA - en
ID - ZNSL_2020_489_a5
ER -
%0 Journal Article
%A V. A. Solonnikov
%T Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 96-112
%V 489
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a5/
%G en
%F ZNSL_2020_489_a5
V. A. Solonnikov. Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 96-112. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a5/
[1] I. V. Denisova, “Evolution of compressible and incompressible fluids separated by a closed interface”, Interfaces Free Bound., 2:3 (2000), 283–312 | DOI | MR | Zbl
[2] V. A. Solonnikov, “$L_2$-theory for two viscous fluids of different type: compressible and incompressible”, Algebra Anal., 32:1 (2020)
[3] V. A. Solonnikov, “$L_p$-estimates of solutioin of the free boundary problem for viscous compressible and incompressible fluids in the linear approximation”, Algebra Anal. (to appear)
[4] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, “Nauka”, M., 1975 | MR
[5] M. Padula, V. A. Solonnikov, “On the local solvability of free boundary problem for the Navier–Stokes equations”, Probl. Mat. Anal., 50 (2010), 87–112 | MR | Zbl