Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 96-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove local in time solvability of the free boundary problem for two phase viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$ with $p>2$, $l\in(1/p,2/p)$.
@article{ZNSL_2020_489_a5,
     author = {V. A. Solonnikov},
     title = {Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {96--112},
     year = {2020},
     volume = {489},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a5/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 96
EP  - 112
VL  - 489
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a5/
LA  - en
ID  - ZNSL_2020_489_a5
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 96-112
%V 489
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a5/
%G en
%F ZNSL_2020_489_a5
V. A. Solonnikov. Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 96-112. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a5/

[1] I. V. Denisova, “Evolution of compressible and incompressible fluids separated by a closed interface”, Interfaces Free Bound., 2:3 (2000), 283–312 | DOI | MR | Zbl

[2] V. A. Solonnikov, “$L_2$-theory for two viscous fluids of different type: compressible and incompressible”, Algebra Anal., 32:1 (2020)

[3] V. A. Solonnikov, “$L_p$-estimates of solutioin of the free boundary problem for viscous compressible and incompressible fluids in the linear approximation”, Algebra Anal. (to appear)

[4] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, “Nauka”, M., 1975 | MR

[5] M. Padula, V. A. Solonnikov, “On the local solvability of free boundary problem for the Navier–Stokes equations”, Probl. Mat. Anal., 50 (2010), 87–112 | MR | Zbl