On Type I blowups of suitable weak solutions to Navier–Stokes equations near boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 81-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note, boundary Type I blowups of suitable weak solutions to the Navier–Stokes equations are discussed. In particular, it has been shown that, under certain assumptions, the existence of non-trivial mild bounded ancient solutions in half space leads to the existence of suitable weak solutions with Type I blowup on the boundary.
@article{ZNSL_2020_489_a4,
     author = {G. Seregin},
     title = {On {Type~I} blowups of suitable weak solutions to {Navier{\textendash}Stokes} equations near boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {81--95},
     year = {2020},
     volume = {489},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a4/}
}
TY  - JOUR
AU  - G. Seregin
TI  - On Type I blowups of suitable weak solutions to Navier–Stokes equations near boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 81
EP  - 95
VL  - 489
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a4/
LA  - en
ID  - ZNSL_2020_489_a4
ER  - 
%0 Journal Article
%A G. Seregin
%T On Type I blowups of suitable weak solutions to Navier–Stokes equations near boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 81-95
%V 489
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a4/
%G en
%F ZNSL_2020_489_a4
G. Seregin. On Type I blowups of suitable weak solutions to Navier–Stokes equations near boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 81-95. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a4/

[1] D. Albritton, T. Barker, On local Type I singularities of the Navier–Stokes equations and Liouville theorems, arXiv: 1811.00502 | MR

[2] T. Barker, G. Seregin, “Ancient solutions to Navier–Stokes equations in half space”, J. Math. Fluid Mech., 17:3 (2015), 551–575 | DOI | MR | Zbl

[3] K. Kang, “Unbounded normal derivative for the Stokes system near boundary”, Math. Ann., 331 (2005), 87–109 | DOI | MR | Zbl

[4] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. math. fluid mech., 4:1 (2002), 1–29 | DOI | MR | Zbl

[5] G. Seregin, “A note on local boundary regularity for the Stokes system”, Zap. Nauchn. Sem. POMI, 370, 2009, 151–159 | MR

[6] G. Seregin, “Remark on Wolf's condition for boundary regularity of Navier-Stokes equations”, Zap. Nauchn. Sem. POMI, 444, 2016, 124–132 | MR

[7] G. Seregin, V. Sverak, “On a bounded shear flow in half-space”, Zap. Nauchn. Sem. POMI, 385, 2010, 200–205 | MR

[8] G. Seregin, V. Sverak, “Rescalings at possible singularities of Navier–Stokes equations in half-space”, Algebra i Analiz, 25:5 (2013), 146–172 | MR