@article{ZNSL_2020_489_a3,
author = {S. Repin},
title = {Estimates of the distance to the solution of an evolutionary problem obtained by linearization of the {Navier{\textendash}Stokes} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--80},
year = {2020},
volume = {489},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a3/}
}
TY - JOUR AU - S. Repin TI - Estimates of the distance to the solution of an evolutionary problem obtained by linearization of the Navier–Stokes equation JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 67 EP - 80 VL - 489 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a3/ LA - en ID - ZNSL_2020_489_a3 ER -
S. Repin. Estimates of the distance to the solution of an evolutionary problem obtained by linearization of the Navier–Stokes equation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 67-80. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a3/
[1] I. Babuška, A. K. Aziz, Surway lectures on the mathematical foundations of the finite element method, Academic Press, New York, 1972 | MR
[2] F. Brezzi, “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers”, R.A.I.R.O., Annal. Numer. R, 2 (1974), 129–151 | MR | Zbl
[3] O. A. Ladyzhenskaya, Mathematical Problems in the Dynamics of a Viscous Incompressible Flow, second ed., Gordon and Breach, New York, 1969 | MR
[4] O. A. Ladyzenskaja, V. A. Solonnikov, “Some problems of vector analysis, and generalized formulations of boundary value problems for the Navier–Stokes equation”, Zap. Nauchn. Semin. LOMI, 59, 1976, 81–116 | MR
[5] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson et Cie, Paris; Academia, Prague, 1967 | MR
[6] L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Arch. Rat. Mech. Anal., 5 (1960), 286–292 | DOI | MR | Zbl
[7] S. Repin, “Aposteriori estimates for the Stokes problem”, J. Math. Sci., 109:5 (2002), 1950–1964 | DOI | MR
[8] S. Repin, “Estimates of deviations from exact solutions for some boundary-value problems with incompressibility condition”, St. Petersburg Math. J., 16:5 (2004), 124–161 | MR
[9] S. Repin, A Posteriori Estimates for Partial Differential Equations, Walter de Gruyter, Berlin, 2008 | MR
[10] S. Repin, “Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation”, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13:2 (2002), 121–133 | MR | Zbl
[11] S. Repin, “Estimates of deviations from exact solution of the generalized Oseen problem”, Zap. Nauchn. Semin. POMI, 410, 2013, 110–130 | MR | Zbl
[12] V. A. Solonnikov, “Estimates for solutions of a non-stationary linearized system of Navier–Stokes equations”, Zap. Nauchn. Semin. LOMI, 70, 1964, 213–317 | MR | Zbl
[13] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, 2, North-Holland, Amsterdam, 1979 | MR | Zbl