Estimates of the distance to the solution of an evolutionary problem obtained by linearization of the Navier–Stokes equation
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 67-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is concerned with a linearization of the Navier–Stokes equation in the space-time cylinder $Q_T$. The main goal is to deduce computable estimates of the distance between the exact solution and a function in the energy admissible class of vector valued functions. First, the estimates are derived for the case, where this class contains only divergence free (solenoidal) functions. In the next section, estimates of the distance to sets of divergence free functions depending on the space and time variables are considered. These results are used to extend earlier derived estimates to non–solenoidal approximations. The corresponding estimates contain an additional term, which can be viewed as a penalty for the violation of the divergence free condition.
@article{ZNSL_2020_489_a3,
     author = {S. Repin},
     title = {Estimates of the distance to the solution of an evolutionary problem obtained by linearization of the {Navier{\textendash}Stokes} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--80},
     year = {2020},
     volume = {489},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a3/}
}
TY  - JOUR
AU  - S. Repin
TI  - Estimates of the distance to the solution of an evolutionary problem obtained by linearization of the Navier–Stokes equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 67
EP  - 80
VL  - 489
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a3/
LA  - en
ID  - ZNSL_2020_489_a3
ER  - 
%0 Journal Article
%A S. Repin
%T Estimates of the distance to the solution of an evolutionary problem obtained by linearization of the Navier–Stokes equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 67-80
%V 489
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a3/
%G en
%F ZNSL_2020_489_a3
S. Repin. Estimates of the distance to the solution of an evolutionary problem obtained by linearization of the Navier–Stokes equation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 67-80. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a3/

[1] I. Babuška, A. K. Aziz, Surway lectures on the mathematical foundations of the finite element method, Academic Press, New York, 1972 | MR

[2] F. Brezzi, “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers”, R.A.I.R.O., Annal. Numer. R, 2 (1974), 129–151 | MR | Zbl

[3] O. A. Ladyzhenskaya, Mathematical Problems in the Dynamics of a Viscous Incompressible Flow, second ed., Gordon and Breach, New York, 1969 | MR

[4] O. A. Ladyzenskaja, V. A. Solonnikov, “Some problems of vector analysis, and generalized formulations of boundary value problems for the Navier–Stokes equation”, Zap. Nauchn. Semin. LOMI, 59, 1976, 81–116 | MR

[5] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson et Cie, Paris; Academia, Prague, 1967 | MR

[6] L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Arch. Rat. Mech. Anal., 5 (1960), 286–292 | DOI | MR | Zbl

[7] S. Repin, “Aposteriori estimates for the Stokes problem”, J. Math. Sci., 109:5 (2002), 1950–1964 | DOI | MR

[8] S. Repin, “Estimates of deviations from exact solutions for some boundary-value problems with incompressibility condition”, St. Petersburg Math. J., 16:5 (2004), 124–161 | MR

[9] S. Repin, A Posteriori Estimates for Partial Differential Equations, Walter de Gruyter, Berlin, 2008 | MR

[10] S. Repin, “Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation”, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13:2 (2002), 121–133 | MR | Zbl

[11] S. Repin, “Estimates of deviations from exact solution of the generalized Oseen problem”, Zap. Nauchn. Semin. POMI, 410, 2013, 110–130 | MR | Zbl

[12] V. A. Solonnikov, “Estimates for solutions of a non-stationary linearized system of Navier–Stokes equations”, Zap. Nauchn. Semin. LOMI, 70, 1964, 213–317 | MR | Zbl

[13] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, 2, North-Holland, Amsterdam, 1979 | MR | Zbl