@article{ZNSL_2020_489_a1,
author = {A. Enin and P. Perstneva and S. Tikhomirov},
title = {Periodic solutions of parabolic equations with hysteresis in the dimension~1},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {36--54},
year = {2020},
volume = {489},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a1/}
}
TY - JOUR AU - A. Enin AU - P. Perstneva AU - S. Tikhomirov TI - Periodic solutions of parabolic equations with hysteresis in the dimension 1 JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 36 EP - 54 VL - 489 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a1/ LA - ru ID - ZNSL_2020_489_a1 ER -
A. Enin; P. Perstneva; S. Tikhomirov. Periodic solutions of parabolic equations with hysteresis in the dimension 1. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 36-54. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a1/
[1] L. V. Kantorovich, “O metode Nyutona”, Tr. MIAN SSSR, 28, 1949, 104–144 | Zbl
[2] H. W. Alt, “On the thermostat problem”, Control Cyb., 14 (1985), 171–193 | MR
[3] P.-A. Bliman, A. M. Krasnosel'skii, “Periodic solutions of linear systems coupled with relay”, Nonlinear Anal., 30:2 (1997), 687–696 | DOI | MR | Zbl
[4] M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, Berlin, 1996 | MR | Zbl
[5] M. Fečkan, “Periodic solutions in systems at resonances with small relay hysteresis”, Math. Slovaca, 49:1 (1999), 41–52 | MR
[6] A. Friedman, L.-S. Jiang, “Periodic solutions for a thermostat control problem”, Commun. Partial Differential Equations, 13:5 (1988), 515–550 | DOI | MR | Zbl
[7] I. G. Götz, K.-H. Hoffmann, A. M. Meirmanov, “Periodic solutions of the Stefan problem with hysteresis-type boundary conditions”, Manuscripta Math., 78 (1983), 179–199 | MR
[8] P. Gurevich, “Periodic solutions of parabolic problems with hysteresis on the boundary”, Discrete and Continuous Dynamical Systems, 29:3 (2011) | DOI | MR | Zbl
[9] P. L. Gurevich, W. Jäger, A. L. Skubachevskii, “On periodicity of solutions for thermocontrol problems with hysteresis-type switches”, SIAM J. Math. Anal., 41:2 (2009), 733–752 | DOI | MR | Zbl
[10] P. Gurevich, S. Tikhomirov, “Symmetric periodic solutions of parabolic problems with discontinuous hysteresis”, J. Dynam. Diff. Equations, 23:4 (2011), 923–960 | DOI | MR | Zbl
[11] Sistemy s Gisterezisom, Nauka, M., 1983 | MR | Zbl | Zbl
[12] J. Macki, P. Nistri, P. Zecca, “Mathematical models for hysteresis”, SIAM Rev., 35:1 (1993), 94–123 | DOI | MR | Zbl
[13] J. Prüss, “Periodic solutions of the thermostat problem”, Proc. Conf. “Differential Equations in Banach Spaces” (Bologna, July, 1985), Lecture Notes Math., 1223, Springer-Verlag, Berlin–New York, 1986, 216–226 | DOI | MR
[14] T. I. Seidman, “Switching systems and periodicity”, Proc. Conf. “Nonlinear Semigroups, Partial Differential Equations and Attractors” (Washington, DC, 1987), Lecture Notes in Math., 1394, Springer-Verlag, Berlin–New York, 1989, 199–210 | DOI | MR
[15] S. Varigonda, T. Georgiou, “Dynamics of relay relaxation oscillators”, IEEE Trans. Automat. Control, 46:1 (2001), 65–77 | DOI | MR | Zbl
[16] A. Visintin, Differential Models of Hysteresis, Springer-Verlag, Berlin–Heidelberg, 1994 | MR | Zbl