Periodic solutions of parabolic equations with hysteresis in the dimension 1
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 36-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the heat equation in the interval with non-ideal relay in the boundary condition. Thermostat is our prototype model. In the most important case of the location of measuring devices near the boundary of the interval we prove existence and stability of unimodal periodic solutions.
@article{ZNSL_2020_489_a1,
     author = {A. Enin and P. Perstneva and S. Tikhomirov},
     title = {Periodic solutions of parabolic equations with hysteresis in the dimension~1},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--54},
     year = {2020},
     volume = {489},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a1/}
}
TY  - JOUR
AU  - A. Enin
AU  - P. Perstneva
AU  - S. Tikhomirov
TI  - Periodic solutions of parabolic equations with hysteresis in the dimension 1
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 36
EP  - 54
VL  - 489
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a1/
LA  - ru
ID  - ZNSL_2020_489_a1
ER  - 
%0 Journal Article
%A A. Enin
%A P. Perstneva
%A S. Tikhomirov
%T Periodic solutions of parabolic equations with hysteresis in the dimension 1
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 36-54
%V 489
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a1/
%G ru
%F ZNSL_2020_489_a1
A. Enin; P. Perstneva; S. Tikhomirov. Periodic solutions of parabolic equations with hysteresis in the dimension 1. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 36-54. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a1/

[1] L. V. Kantorovich, “O metode Nyutona”, Tr. MIAN SSSR, 28, 1949, 104–144 | Zbl

[2] H. W. Alt, “On the thermostat problem”, Control Cyb., 14 (1985), 171–193 | MR

[3] P.-A. Bliman, A. M. Krasnosel'skii, “Periodic solutions of linear systems coupled with relay”, Nonlinear Anal., 30:2 (1997), 687–696 | DOI | MR | Zbl

[4] M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, Berlin, 1996 | MR | Zbl

[5] M. Fečkan, “Periodic solutions in systems at resonances with small relay hysteresis”, Math. Slovaca, 49:1 (1999), 41–52 | MR

[6] A. Friedman, L.-S. Jiang, “Periodic solutions for a thermostat control problem”, Commun. Partial Differential Equations, 13:5 (1988), 515–550 | DOI | MR | Zbl

[7] I. G. Götz, K.-H. Hoffmann, A. M. Meirmanov, “Periodic solutions of the Stefan problem with hysteresis-type boundary conditions”, Manuscripta Math., 78 (1983), 179–199 | MR

[8] P. Gurevich, “Periodic solutions of parabolic problems with hysteresis on the boundary”, Discrete and Continuous Dynamical Systems, 29:3 (2011) | DOI | MR | Zbl

[9] P. L. Gurevich, W. Jäger, A. L. Skubachevskii, “On periodicity of solutions for thermocontrol problems with hysteresis-type switches”, SIAM J. Math. Anal., 41:2 (2009), 733–752 | DOI | MR | Zbl

[10] P. Gurevich, S. Tikhomirov, “Symmetric periodic solutions of parabolic problems with discontinuous hysteresis”, J. Dynam. Diff. Equations, 23:4 (2011), 923–960 | DOI | MR | Zbl

[11] Sistemy s Gisterezisom, Nauka, M., 1983 | MR | Zbl | Zbl

[12] J. Macki, P. Nistri, P. Zecca, “Mathematical models for hysteresis”, SIAM Rev., 35:1 (1993), 94–123 | DOI | MR | Zbl

[13] J. Prüss, “Periodic solutions of the thermostat problem”, Proc. Conf. “Differential Equations in Banach Spaces” (Bologna, July, 1985), Lecture Notes Math., 1223, Springer-Verlag, Berlin–New York, 1986, 216–226 | DOI | MR

[14] T. I. Seidman, “Switching systems and periodicity”, Proc. Conf. “Nonlinear Semigroups, Partial Differential Equations and Attractors” (Washington, DC, 1987), Lecture Notes in Math., 1394, Springer-Verlag, Berlin–New York, 1989, 199–210 | DOI | MR

[15] S. Varigonda, T. Georgiou, “Dynamics of relay relaxation oscillators”, IEEE Trans. Automat. Control, 46:1 (2001), 65–77 | DOI | MR | Zbl

[16] A. Visintin, Differential Models of Hysteresis, Springer-Verlag, Berlin–Heidelberg, 1994 | MR | Zbl