Estimates of the fundamental solution for an elliptic equation in divergence form with drift
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 7-35
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a second-order linear divergence-form elliptic equation with uniformly elliptic measurable principal coefficients and with drift we establish a condition on lower order coefficients that guarantees classical two-sided bounds of the fundamental solution.
			
            
            
            
          
        
      @article{ZNSL_2020_489_a0,
     author = {Yu. A. Alkhutov and M. D. Surnachev},
     title = {Estimates of the fundamental solution for an elliptic equation in divergence form with drift},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--35},
     publisher = {mathdoc},
     volume = {489},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a0/}
}
                      
                      
                    TY - JOUR AU - Yu. A. Alkhutov AU - M. D. Surnachev TI - Estimates of the fundamental solution for an elliptic equation in divergence form with drift JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 7 EP - 35 VL - 489 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a0/ LA - ru ID - ZNSL_2020_489_a0 ER -
%0 Journal Article %A Yu. A. Alkhutov %A M. D. Surnachev %T Estimates of the fundamental solution for an elliptic equation in divergence form with drift %J Zapiski Nauchnykh Seminarov POMI %D 2020 %P 7-35 %V 489 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a0/ %G ru %F ZNSL_2020_489_a0
Yu. A. Alkhutov; M. D. Surnachev. Estimates of the fundamental solution for an elliptic equation in divergence form with drift. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 7-35. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a0/