@article{ZNSL_2020_489_a0,
author = {Yu. A. Alkhutov and M. D. Surnachev},
title = {Estimates of the fundamental solution for an elliptic equation in divergence form with drift},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--35},
year = {2020},
volume = {489},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a0/}
}
TY - JOUR AU - Yu. A. Alkhutov AU - M. D. Surnachev TI - Estimates of the fundamental solution for an elliptic equation in divergence form with drift JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 7 EP - 35 VL - 489 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a0/ LA - ru ID - ZNSL_2020_489_a0 ER -
Yu. A. Alkhutov; M. D. Surnachev. Estimates of the fundamental solution for an elliptic equation in divergence form with drift. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Tome 489 (2020), pp. 7-35. http://geodesic.mathdoc.fr/item/ZNSL_2020_489_a0/
[1] W. Littman, G. Stampacchia, H. F. Weinberger, “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 45–79 | MR
[2] G. Stampacchia, “Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus”, Annales de l'Institut Fourier, 15:1 (1965), 189–257 | DOI | MR | Zbl
[3] Y. Pinchover, “On the equivalence of Green functions of second order elliptic equation in $\mathbb{R}^n$”, Diff. Integral Equations, 5:3 (1992), 481–493 | MR | Zbl
[4] Qi Zhang, “A Harnack inequality for the equation $\nabla (a\nabla u)+b\nabla u=0$, when $|b| \in K_{n+1}$”, Manuscripta Math., 89 (1995), 61–77 | DOI | MR
[5] Qi S. Zhang, “Gaussian bounds for the fundamental solutions of $\nabla (A\nabla u)+B\nabla u -u_t=0$”, Manuscripta Math., 93 (1997), 381–390 | DOI | MR | Zbl
[6] V. Kondratiev, V. Liskevich, Z. Sobol, O. Us, “Estimates of heat kernels for a class of second-order elliptic operators with applications to semi-linear inequalitites in exterior domains”, J. London Math. Soc., 69:2 (2004), 107–127 | DOI | MR | Zbl
[7] V. Kozlov, A. I. Nazarov, A comparison theorem for nonsmooth linear operators, 24 Jan 2019, arXiv: 1901.08631v1
[8] K. Kurata, “Continuity and Harnack's inequality for solutions of elliptic partial differential equations of second order”, Indiana University Math. J., 43:2 (1994), 411–440 | DOI | MR | Zbl
[9] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966
[10] E. M. Landis, Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971