Enumeration of labelled and unlabelled Hamiltonian cycles in complete $k$-partite graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XI, Tome 488 (2019), pp. 119-142

Voir la notice de l'article provenant de la source Math-Net.Ru

We enumerate labelled and unlabelled Hamiltonian cycles in complete $n$-partite graphs $K_{d,d,\ldots,d}$ having exactly $d$ vertices in each part (in other words, Turán graphs $T(nd, n))$. We obtain recurrence relations that allow us to find the exact values $b_{n}^{(d)}$ of such cycles for arbitrary $n$ and $d$.
@article{ZNSL_2019_488_a5,
     author = {E. C. Krasko and I. N. Labutin and A. V. Omelchenko},
     title = {Enumeration of labelled and unlabelled {Hamiltonian} cycles in complete $k$-partite graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {119--142},
     publisher = {mathdoc},
     volume = {488},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a5/}
}
TY  - JOUR
AU  - E. C. Krasko
AU  - I. N. Labutin
AU  - A. V. Omelchenko
TI  - Enumeration of labelled and unlabelled Hamiltonian cycles in complete $k$-partite graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 119
EP  - 142
VL  - 488
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a5/
LA  - ru
ID  - ZNSL_2019_488_a5
ER  - 
%0 Journal Article
%A E. C. Krasko
%A I. N. Labutin
%A A. V. Omelchenko
%T Enumeration of labelled and unlabelled Hamiltonian cycles in complete $k$-partite graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 119-142
%V 488
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a5/
%G ru
%F ZNSL_2019_488_a5
E. C. Krasko; I. N. Labutin; A. V. Omelchenko. Enumeration of labelled and unlabelled Hamiltonian cycles in complete $k$-partite graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XI, Tome 488 (2019), pp. 119-142. http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a5/