Enumeration of labelled and unlabelled Hamiltonian cycles in complete $k$-partite graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XI, Tome 488 (2019), pp. 119-142
Voir la notice de l'article provenant de la source Math-Net.Ru
We enumerate labelled and unlabelled Hamiltonian cycles in complete $n$-partite graphs $K_{d,d,\ldots,d}$ having exactly $d$ vertices in each part (in other words, Turán graphs $T(nd, n))$. We obtain recurrence relations that allow us to find the exact values $b_{n}^{(d)}$ of such cycles for arbitrary $n$ and $d$.
@article{ZNSL_2019_488_a5,
author = {E. C. Krasko and I. N. Labutin and A. V. Omelchenko},
title = {Enumeration of labelled and unlabelled {Hamiltonian} cycles in complete $k$-partite graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {119--142},
publisher = {mathdoc},
volume = {488},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a5/}
}
TY - JOUR AU - E. C. Krasko AU - I. N. Labutin AU - A. V. Omelchenko TI - Enumeration of labelled and unlabelled Hamiltonian cycles in complete $k$-partite graphs JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 119 EP - 142 VL - 488 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a5/ LA - ru ID - ZNSL_2019_488_a5 ER -
%0 Journal Article %A E. C. Krasko %A I. N. Labutin %A A. V. Omelchenko %T Enumeration of labelled and unlabelled Hamiltonian cycles in complete $k$-partite graphs %J Zapiski Nauchnykh Seminarov POMI %D 2019 %P 119-142 %V 488 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a5/ %G ru %F ZNSL_2019_488_a5
E. C. Krasko; I. N. Labutin; A. V. Omelchenko. Enumeration of labelled and unlabelled Hamiltonian cycles in complete $k$-partite graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XI, Tome 488 (2019), pp. 119-142. http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a5/