@article{ZNSL_2019_488_a5,
author = {E. C. Krasko and I. N. Labutin and A. V. Omelchenko},
title = {Enumeration of labelled and unlabelled {Hamiltonian} cycles in complete $k$-partite graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {119--142},
year = {2019},
volume = {488},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a5/}
}
TY - JOUR AU - E. C. Krasko AU - I. N. Labutin AU - A. V. Omelchenko TI - Enumeration of labelled and unlabelled Hamiltonian cycles in complete $k$-partite graphs JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 119 EP - 142 VL - 488 UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a5/ LA - ru ID - ZNSL_2019_488_a5 ER -
%0 Journal Article %A E. C. Krasko %A I. N. Labutin %A A. V. Omelchenko %T Enumeration of labelled and unlabelled Hamiltonian cycles in complete $k$-partite graphs %J Zapiski Nauchnykh Seminarov POMI %D 2019 %P 119-142 %V 488 %U http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a5/ %G ru %F ZNSL_2019_488_a5
E. C. Krasko; I. N. Labutin; A. V. Omelchenko. Enumeration of labelled and unlabelled Hamiltonian cycles in complete $k$-partite graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XI, Tome 488 (2019), pp. 119-142. http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a5/
[1] B. Nienhuis, “Exact critical point and critical exponents of $O(n)$ models in two dimensions”, Phys. Rev. Lett., 49 (1062), 1062 | DOI | MR
[2] K. A. Dill, “Polymer principles and protein folding”, Protein Sci., 8:6 (1999), 1166–80 | DOI
[3] O. Bodroža-Pantić, B. Pantić, I. Pantić, M. Bodroža-Solarov, “Enumeration of Hamiltonian cycles in some grid graphs”, Commun. Math. Comput. Chem., 70 (2013), 181–204 | MR | Zbl
[4] E. Wynn, Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs, 2014, arXiv: 1402.0545 [math.CO]
[5] J. L. Jacobsen, “Exact enumeration of Hamiltonian circuits, walks and chains in two and three dimensions”, J. Phys. A: Math. Theor., 40, 14667 | DOI | MR | Zbl
[6] C. Thomassen, “On the number of Hamiltonian cycles in bipartite graphs”, Combinatorics, Probability and Computing, 5 (1996), 437–442 | DOI | MR | Zbl
[7] N. Alon, “The maximum number of Hamiltonian paths in tournaments”, Combinatorica, 10:4 (1990), 319–324 | DOI | MR | Zbl
[8] Endre Szemeredi, G. N. Sarkozya, S. M. Selkowa, “On the number of Hamiltonian cycles in Dirac graphs”, Discrete Mathematics, 265 (2003), 237–250 | DOI | MR | Zbl
[9] A. J. Schwenk, “Enumeration of Hamiltonian cycles in certain generalized Petersen graphs”, J. Combin. Theory Ser. B, 47 (1989), 53–59 | DOI | MR | Zbl
[10] E. Dixon, S. Goodman, “On the number of Hamiltonian circuits in the n-cube”, Proceedings of the American Mathematical Society, 50 (1975), 500–504 | MR | Zbl
[11] D. Singmaster, “Hamiltonian circuits on the n-dimensional octahedron”, J. Combin. Theory, Ser. B, 19:1 (1975), 1–4 | DOI | MR | Zbl
[12] M. Hazewinkel, V. V. Kalashnikov, Counting Interlacing Pairs on the Circle, Report AM. Stichting Mathematisch Centrum, Department of Analysis, Algebra and Geometry, 1995
[13] A. V. Omelchenko, E. S. Krasko, “Enumeration of chord diagrams without loops and parallel chords”, The Electronic Journal of Combinatorics, 24:3 (2017), P3.43 | MR | Zbl
[14] R. J. Mathar, A class of multinomial permutations avoiding object clusters viXra:1511.0015