@article{ZNSL_2019_488_a3,
author = {K. P. Kokhas and A. S. Latyshev},
title = {Cliques and constructors in {{\textquotedblleft}Hats{\textquotedblright}} {game.~I}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {66--96},
year = {2019},
volume = {488},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a3/}
}
K. P. Kokhas; A. S. Latyshev. Cliques and constructors in “Hats” game. I. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XI, Tome 488 (2019), pp. 66-96. http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a3/
[1] S. Butler et al., “Hat guessing games”, SIAM review, 51 (2009), 399–413 | DOI | MR | Zbl
[2] M. Gadouleau, N. Georgiou, “New constructions and bounds for Winkler's Hat Game”, SIAM J. Discrete Math., 29:2 (2015), 823–834 | DOI | MR | Zbl
[3] M. Gadouleau, “Finite dynamical systems, Hat Games, and coding theory”, SIAM J. Discrete Math., 32:3 (2018), 1922–1945 | DOI | MR | Zbl
[4] W. W. Szczechla, “The three colour hat guessing game on cycle graphs”, The Electronic Journal of Combinatorics, 26 (2017) | MR
[5] M. Farnik, A hat guessing game, PhD thesis, Jagiellonian University, 2015
[6] N. Alon et al., The hat guessing number of graphs, 2018, arXiv: 1812.09752
[7] B. Bosek et al., Hat chromatic number of graphs, 2019, arXiv: abs/1905.04108v1
[8] K. P. Kokhas, A. S. Latyshev, “Na kakikh grafakh mudretsy mogut ugadat tsvet khotya by odnoi shlyapy”, Zap. nauchn. semin. POMI, 464, 2017
[9] M. Krzywkowski, “On the hat problem, its variations, and their applications”, Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica, 9:1 (2010) | MR | Zbl
[10] K. Soundararajan, Approximating 1 from below using $n$ Egyptian fractions, 2005, arXiv: math/0502247v1
[11] S. L. Berlov i dr., Zadachi Sankt-Peterburgskoi olimpiady shkolnikov po matematike 2016 goda, MTsNMO, M., 2017