Notes on functional integration
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 140-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This work is devoted to the construction of an “integral” on an infinite-dimensional space which combines the approaches proposed earlier and at the same time is the simpliest one. We give a new definition of the construction and study its properties on a special class of functionals. We also consider the introduction of a quasi-scalar product, an orthonormal system, and applications in physics (path integral, loop space, functional derivative). In addition the paper contains a discussion of generalized functionals.
@article{ZNSL_2019_487_a8,
     author = {A. V. Ivanov},
     title = {Notes on functional integration},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--150},
     year = {2019},
     volume = {487},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a8/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - Notes on functional integration
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 140
EP  - 150
VL  - 487
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a8/
LA  - en
ID  - ZNSL_2019_487_a8
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T Notes on functional integration
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 140-150
%V 487
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a8/
%G en
%F ZNSL_2019_487_a8
A. V. Ivanov. Notes on functional integration. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 140-150. http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a8/

[1] P. J. Daniell, “Integrals in An Infinite Number of Dimensions”, The Annals of Mathematics, 20:4 (1919), 281–288 | DOI | MR

[2] L. D. Faddeev, A. A. Slavnov, Gauge Fields: An Introduction To Quantum Theory, The Benjamin-Cummings Publishing Company, 1980 | MR

[3] V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, Springer Netherlands, 1983 | MR

[4] L. A. Takhtajan, Quantum Mechanics for Mathematicians, Graduate Series in Mathematics, 95, American Mathematical Society, 2008 | DOI | MR | Zbl

[5] J. M. Rabin, “Introduction to quantum field theory for mathematicians”, Geometry and quantum field theory, IAS/Park City Math. Ser., 1, 1991, 185–269 | MR

[6] Yu. L. Daletskii, S. V. Fomin, Measures and differential equations in infinite-dimensional spaces, Nauka, M., 1983 | MR

[7] R. P. Feynman, “Space-Time Approach to Non-Relativistic Quantum Mechanics”, Review of Modern Physics, 20 (1948), 367–387 | DOI | MR | Zbl

[8] N. Wiener, “The average of an analytical functional”, Proc. Nat. Acad. Sci. USA, 7 (1921), 253–260 | DOI | Zbl

[9] M. Kac, “On Distributions of Certain Wiener Functionals”, Trans. Amer. Math. Soc., 65 (1949), 1–13 | DOI | MR | Zbl

[10] E. T. Shavgulidze, O. G. Smolyanov, Continual integrals, M., 1990

[11] G. M. Fichtenholz, Course of differential and integral calculus, v. 2, Science, M., 1970 | MR

[12] V. S. Vladimirov, Generalized functions in mathematical physics, Mir Publishers, M., 1979 | MR | Zbl

[13] A. V. Ivanov, N. V. Kharuk, Heat kernel: proper time method, Fock-Schwinger gauge, path integral representation, and Wilson line, 2019, arXiv: 1906.04019 [hep-th]

[14] Ya. A. Butko, “Feynman Formulas and Functional Integrals for Diffusion with Drift in a Domain on a Manifold”, Math. Notes, 83 (2008), 301–316 | DOI | MR | Zbl

[15] A. K. Kravtseva, “Infinite-Dimensional Schrödinger Equations with Polynomial Potentials and Representation of Their Solutions via Feynman Integrals”, Math. Notes, 94 (2013), 824–828 | DOI | MR | Zbl