Schlesinger transformations for algebraic Painlevé VI solutions
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 106-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Schlesinger (S) transformations can be combined with a direct rational (R) pull-back of a hypergeometric $2\times 2$ system of ODEs to obtain $RS^2_4$-pullback transformations to isomonodromic $2\times 2$ Fuchsian systems with 4 singularities. The corresponding Painlevé VI solutions are algebraic functions, possibly in different orbits under Okamoto transformations. This article demonstrates direct computations (involving polynomial syzygies) of Schlesinger transformations that affect several singular points at once, and presents an algebraic procedure of computing algebraic Painlevé VI solutions without deriving full RS-pullback transformations.
@article{ZNSL_2019_487_a7,
     author = {R. Vidunas and A. V. Kitaev},
     title = {Schlesinger transformations for algebraic {Painlev\'e} {VI} solutions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {106--139},
     year = {2019},
     volume = {487},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a7/}
}
TY  - JOUR
AU  - R. Vidunas
AU  - A. V. Kitaev
TI  - Schlesinger transformations for algebraic Painlevé VI solutions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 106
EP  - 139
VL  - 487
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a7/
LA  - en
ID  - ZNSL_2019_487_a7
ER  - 
%0 Journal Article
%A R. Vidunas
%A A. V. Kitaev
%T Schlesinger transformations for algebraic Painlevé VI solutions
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 106-139
%V 487
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a7/
%G en
%F ZNSL_2019_487_a7
R. Vidunas; A. V. Kitaev. Schlesinger transformations for algebraic Painlevé VI solutions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 106-139. http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a7/

[1] F. V. Andreev, A. V. Kitaev, “Some Examples of $RS^2_3(3)$-Transformations of Ranks $5$ and $6$ as the Higher Order Transformations for the Hypergeometric Function”, Ramanujan J., 7:4 (2003), 455–476 ; (2000), 20 pp., arXiv: nlin.SI/0012052 | DOI | MR | Zbl

[2] F. V. Andreev, A. V. Kitaev, “Transformations ${RS}_4^2(3)$ of the Ranks $\leq4$ and Algebraic Solutions of the Sixth Painlevé Equation”, Comm. Math. Phys., 228 (2002), 151–176 ; (2001), 26 pp., arXiv: nlin.SI/0107074 | DOI | MR | Zbl

[3] P. Boalch, “The fifty-two icosahedral solutions to Painlevé VI”, Reine Angew. Math., 596 (2006), 183–214 | MR | Zbl

[4] P. Boalch, “Some explicit solutions to the Riemann-Hilbert problem”, Differential Equations and Quantum Groups, IRMA Lectures in Mathematics and Theoretical Physics, 9, 2006, 85–112 | MR

[5] D. Cox, What is the role of algebra in applied mathematics?, Notices of the AMS, 52:10 (2005), 1193–1198 | MR | Zbl

[6] D. Cox, T. W. Sederberg, F. Chen, “The moving line ideal basis of planar rational curves”, Computer Aided Geometric Design, 15 (1998), 803C827 | DOI | MR

[7] Ch. F. Doran, “Algebraic and Geometric Isomonodromic Deformations”, J. Differential Geometry, 59 (2001), 33–85 | DOI | MR | Zbl

[8] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Springer Lect. Notes Math., 1620, eds. M. Francaviglia, S. Greco, 1995, 120–348 | DOI | MR

[9] B. Dubrovin, M. Mazzocco, “Monodromy of Certain Painlevé–VI Transcendents and Reflection Groups”, Invent. Math., 141 (2000), 55–147 | DOI | MR | Zbl

[10] D. Eisenbud, Geometry Of Syzygies, Graduate Texts in Mathematics, 229, Springer Verlag, 2005 | MR | Zbl

[11] H. Flashka, A. C. Newell, “Monodromy and spectrum preserving deformations, I”, Commun. Math. Phys., 76 (1980), 67–116 | MR

[12] R. Fuchs, “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen”, Math. Ann., 70 (1911), 525–549 | DOI | MR | Zbl

[13] D. Hilbert, “Über die Theorie der algebraischen Formen”, Math. Ann., 36 (1890), 473–534 | DOI | MR | Zbl

[14] N. J. Hitchin, “A lecture on the octahedron”, Bulletin of the London Math Soc., 35 (2003), 577–600 | DOI | MR | Zbl

[15] N.J. Hitchin, “Poncelet polygons and the Painlevé equations”, Geometry and Analysis (Bombay, 1992), Tata Inst. Fund. Res., Bombay, 1995, 151–185 | MR | Zbl

[16] M. Jimbo, T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II”, Physica, 2D (1981), 407–448 | MR | Zbl

[17] M. Kato, T. Mano, J. Sekiguchi, “Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation”, Opuscula Math., 2 (2018), 201–252 | DOI | MR | Zbl

[18] A. V. Kitaev, “Quadratic transformations for the sixth Painlevé equation”, Lett. Math. Phys., 21 (1991), 105–111 | DOI | MR | Zbl

[19] A. V. Kitaev, “Special Functions of the Isomonodromy Type, Rational Transformations of Spectral Parameter, and Algebraic Solutions of the Sixth Painlevé Equation”, Algebra i Anal., 14:3 (2002), 121–139 | MR

[20] A. V. Kitaev, “Grothendieck's Dessins d'Enfants, Their Deformations and Algebraic Solutions of the Sixth Painlevé and Gauss Hypergeometric Equations”, Algebra i Analiz, 17:1 (2005), 224–273 | MR

[21] F. Klein, Vorlesungen über das Ikosaedar, B. G. Teubner, Leipzig, 1884

[22] O. Lisovyy, Y. Tykhyy, “Algebraic solutions of the sixth Painlevé equation”, J. Geometr. Phys., 85 (2014), 124–163 | DOI | MR | Zbl

[23] F. Meyer, “Zur Theorie der reducibeln ganzen Functionen von $n$ Variabeln”, Math. Ann., 30 (1887), 30–74 | DOI | MR | Zbl

[24] H. Movasati, S. Reiter, “Painlevé VI equations with algebraic solutions and family of curves”, Experimental Math., 19:2 (2010), 161–173 | DOI | MR | Zbl

[25] U. Mugan, A. Sakka, “Schlesinger transformations for Painlevé VI equation”, J. Math. Phy., 36 (1995), 1284–1298 | DOI | MR | Zbl

[26] Y. Ohyama, S. Okumura, “R. Fuch's problem of the Painlevé Equations from the first to the fifth”, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemporary Mathematics, 593, eds. A. Dzhamay, K. Maruno, V. U. Pierce, AMS, Providence, 2013, 163–178 | DOI | MR | Zbl

[27] K. Okamoto, “Studies on the Painlevé Equations. I. Sixth Painlevé Equation $P_{VI}$”, Annali Mat. Pura Appl., 146 (1987), 337–381 | DOI | MR | Zbl

[28] R. Vidunas, “Algebraic Transformations of Gauss Hypergeometric”, Funkcialaj Ekvacioj, 52 (2009), 139–180 | DOI | MR | Zbl

[29] R. Vidunas, A. V. Kitaev, “Quadratic Transformations of the Sixth Painlevé Equation”, Math. Nachrichten, 280:16 (2007), 1834–1855 | DOI | MR | Zbl

[30] R. Vidunas, A. V. Kitaev, “Computation of highly ramified coverings”, Math. of Computation, 78 (2009), 2371–2395 | DOI | MR | Zbl

[31] R. Vidunas, A. V. Kitaev, “Computation of $RS$-pullback transformations for algebraic Painlevé VI solutions”, J. Math. Sci., 213 (2016), 706–722 | DOI | MR | Zbl

[32] R. Vidunas, J. Sekiguchi, Differential relations for almost Belyi maps, Accepted for the proceedings of the workshop “Grothendieck-Teichmüller theories” (July 2016, the Chern Institute, Tianjin, China)

[33] A. Zvonkin, “Megamaps: Construction and Examples”, Discrete Mathematics and Theoretical Computer Science Proceedings AA (DM-CCG), 2001, 329–340 | MR | Zbl