Universal $R$-matrix for the rational seven-vertex model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 100-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Rational seven-vertex statistical model is considered. With the use of fusion procedure we find an explicit expression for the universal $R$-matrix of this model.
@article{ZNSL_2019_487_a6,
     author = {P. A. Valinevich and P. V. Antonenko},
     title = {Universal $R$-matrix for the rational seven-vertex model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {100--105},
     year = {2019},
     volume = {487},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a6/}
}
TY  - JOUR
AU  - P. A. Valinevich
AU  - P. V. Antonenko
TI  - Universal $R$-matrix for the rational seven-vertex model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 100
EP  - 105
VL  - 487
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a6/
LA  - ru
ID  - ZNSL_2019_487_a6
ER  - 
%0 Journal Article
%A P. A. Valinevich
%A P. V. Antonenko
%T Universal $R$-matrix for the rational seven-vertex model
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 100-105
%V 487
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a6/
%G ru
%F ZNSL_2019_487_a6
P. A. Valinevich; P. V. Antonenko. Universal $R$-matrix for the rational seven-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 100-105. http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a6/

[1] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992

[2] D. Chicherin, V. Spiridonov, The hyperbolic modular double and the Yang-Baxter equation, arXiv: 1511.00131 | MR

[3] D. Chicherin, S. Derkachov, V. Spiridonov, “From principal series to finite-demensional solutions of the Yang-Baxter equation”, SIGMA, 12 (2016), 028 | MR | Zbl

[4] A. Antonov, K. Hasegawa, A. Zabrodin, On trigonometric intertwining vectors and non-dynamical $R$-matrix for the Ruijsenaars model, arXiv: hep-th/9704074 | MR

[5] A. Gorsky, A. Zabrodin, “Degenerations of Sklyanin algebra and Askey-Wilson polynomials”, J. Phys. A: Math. Gen., 26 (1993), L635–L639 | DOI | MR | Zbl

[6] I. V. Cherednik, “On a method of constructing factorized S-matrices in elementary functions”, Teor. Mat. Fiz., 43:1 (1980), 117–119 | DOI | MR

[7] R. Baxter, Exactly soved models of statistical mechanics, Academic Press, 1982 | MR

[8] P. Kulish, E. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes in Physics, 151, 1982, 61–119 | DOI | MR | Zbl

[9] P. Kulish, P. Ryasichenko, “Algebraicheskii anzats Bete dlya semivershinnoi modeli”, Zap. nauch. semin. POMI, 347, 2007, 178–186 | MR

[10] A. A. Stolin, P. P. Kulish, E. V. Damaskinskii, “O postroenii universalnogo elementa skruchivaniya”, Zap. nauchn. semin. POMI, 291, 2002, 228–244