@article{ZNSL_2019_487_a6,
author = {P. A. Valinevich and P. V. Antonenko},
title = {Universal $R$-matrix for the rational seven-vertex model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {100--105},
year = {2019},
volume = {487},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a6/}
}
P. A. Valinevich; P. V. Antonenko. Universal $R$-matrix for the rational seven-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 100-105. http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a6/
[1] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992
[2] D. Chicherin, V. Spiridonov, The hyperbolic modular double and the Yang-Baxter equation, arXiv: 1511.00131 | MR
[3] D. Chicherin, S. Derkachov, V. Spiridonov, “From principal series to finite-demensional solutions of the Yang-Baxter equation”, SIGMA, 12 (2016), 028 | MR | Zbl
[4] A. Antonov, K. Hasegawa, A. Zabrodin, On trigonometric intertwining vectors and non-dynamical $R$-matrix for the Ruijsenaars model, arXiv: hep-th/9704074 | MR
[5] A. Gorsky, A. Zabrodin, “Degenerations of Sklyanin algebra and Askey-Wilson polynomials”, J. Phys. A: Math. Gen., 26 (1993), L635–L639 | DOI | MR | Zbl
[6] I. V. Cherednik, “On a method of constructing factorized S-matrices in elementary functions”, Teor. Mat. Fiz., 43:1 (1980), 117–119 | DOI | MR
[7] R. Baxter, Exactly soved models of statistical mechanics, Academic Press, 1982 | MR
[8] P. Kulish, E. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes in Physics, 151, 1982, 61–119 | DOI | MR | Zbl
[9] P. Kulish, P. Ryasichenko, “Algebraicheskii anzats Bete dlya semivershinnoi modeli”, Zap. nauch. semin. POMI, 347, 2007, 178–186 | MR
[10] A. A. Stolin, P. P. Kulish, E. V. Damaskinskii, “O postroenii universalnogo elementa skruchivaniya”, Zap. nauchn. semin. POMI, 291, 2002, 228–244