Quantum Hamiltonian eigenstates for a free transverse field
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 78-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We demonstrate that quantum Hamiltonian operator for a free transverse field within the framework of the second quantization reveals an alternative set of states satisfying the eigenstate functional equations. The construction is based upon extensions of the quadratic form of the transverse Laplace operator which are used as a source of spherical basis functions with singularity at the origin. This basis then naturally takes place of the one of plane or spherical waves in the process of Fourrier or spherical variable separation.
@article{ZNSL_2019_487_a5,
     author = {T. A. Bolokhov},
     title = {Quantum {Hamiltonian} eigenstates for a free transverse field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--99},
     year = {2019},
     volume = {487},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a5/}
}
TY  - JOUR
AU  - T. A. Bolokhov
TI  - Quantum Hamiltonian eigenstates for a free transverse field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 78
EP  - 99
VL  - 487
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a5/
LA  - ru
ID  - ZNSL_2019_487_a5
ER  - 
%0 Journal Article
%A T. A. Bolokhov
%T Quantum Hamiltonian eigenstates for a free transverse field
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 78-99
%V 487
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a5/
%G ru
%F ZNSL_2019_487_a5
T. A. Bolokhov. Quantum Hamiltonian eigenstates for a free transverse field. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 78-99. http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a5/

[1] P. A. M. Dirac, “Quantum theory of emission and absorption of radiation”, Proc. Roy. Soc. Lond. A, 114 (1927), 243 | DOI | Zbl

[2] C. M. Becchi, “Second quantization”, Scholarpedia, 5:6 http://www.scholarpedia.org/article/Second_quantization | DOI

[3] F. A. Berezin, L. D. Faddeev, “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, Dokl. AN SSSR, 137:5 (1961), 1011–1014 | Zbl

[4] R. Jackiw, “Delta function potentials in two-dimensional and three-dimensional quantum mechanics”, Diverse topics in theoretical and mathematical physics, 1991, 35–53

[5] L. D. Faddeev, “Mass in Quantum Yang-Mills Theory (comment on a Clay millenium problem)”, Bull. Brazil. Math. Soc., 33:2 (2002), 201–212 | DOI | MR | Zbl

[6] L. D. Faddeev, “Zamechaniya o raskhodimostyakh i razmernoi transmutatsii v teorii Yanga-Millsa”, Teor. mat. fiz., 148 (2006), 133 | DOI | Zbl

[7] R. D. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1982 | MR

[8] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR

[9] K. Friedrichs, “Spektraltheorie halbbeschränkter Operatoren”, Math. Ann., 109 (1934), 465–487 ; M. Stone, Linear Transformations in Hilbert spaces and their Applications in Analysis, Amer. Math. Soc. Colloquium Publication, 15, Providence, R.I., 1932 (or see theorem X.23 in [11]) | DOI | MR | DOI | MR | Zbl

[10] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977

[11] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz i samosopryazhennost, Mir, M., 1978

[12] T. A. Bolokhov, “Svoistva radialnoi chasti operatora Laplasa pri $l=1$ v spetsialnom skalyarnom proizvedenii”, Zap. nauchn. semin. POMI, 434, 2015

[13] B. F. Schutz, Geometrical methods of mathematical physics, Cambridge University Press, 1982; E. L. Hill, “The Theory of Vector Spherical Harmonics”, Am. J. Phys., 22 (1954) | DOI | MR | Zbl

[14] T. A. Bolokhov, “Rasshireniya kvadratichnoi formy vektornogo poperechnogo operatora Laplasa”, Zap. nauchn. semin. POMI, 433, 2015

[15] T. A. Bolokhov, “Skalyarnye proizvedeniya dlya regulyarnykh analiticheskikh vektorov operatora Laplasa v solenoidalnom podprostranstve”, Zap. nauchn. semin. POMI, 473, 2018