@article{ZNSL_2019_487_a5,
author = {T. A. Bolokhov},
title = {Quantum {Hamiltonian} eigenstates for a free transverse field},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {78--99},
year = {2019},
volume = {487},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a5/}
}
T. A. Bolokhov. Quantum Hamiltonian eigenstates for a free transverse field. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 78-99. http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a5/
[1] P. A. M. Dirac, “Quantum theory of emission and absorption of radiation”, Proc. Roy. Soc. Lond. A, 114 (1927), 243 | DOI | Zbl
[2] C. M. Becchi, “Second quantization”, Scholarpedia, 5:6 http://www.scholarpedia.org/article/Second_quantization | DOI
[3] F. A. Berezin, L. D. Faddeev, “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, Dokl. AN SSSR, 137:5 (1961), 1011–1014 | Zbl
[4] R. Jackiw, “Delta function potentials in two-dimensional and three-dimensional quantum mechanics”, Diverse topics in theoretical and mathematical physics, 1991, 35–53
[5] L. D. Faddeev, “Mass in Quantum Yang-Mills Theory (comment on a Clay millenium problem)”, Bull. Brazil. Math. Soc., 33:2 (2002), 201–212 | DOI | MR | Zbl
[6] L. D. Faddeev, “Zamechaniya o raskhodimostyakh i razmernoi transmutatsii v teorii Yanga-Millsa”, Teor. mat. fiz., 148 (2006), 133 | DOI | Zbl
[7] R. D. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1982 | MR
[8] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR
[9] K. Friedrichs, “Spektraltheorie halbbeschränkter Operatoren”, Math. Ann., 109 (1934), 465–487 ; M. Stone, Linear Transformations in Hilbert spaces and their Applications in Analysis, Amer. Math. Soc. Colloquium Publication, 15, Providence, R.I., 1932 (or see theorem X.23 in [11]) | DOI | MR | DOI | MR | Zbl
[10] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977
[11] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz i samosopryazhennost, Mir, M., 1978
[12] T. A. Bolokhov, “Svoistva radialnoi chasti operatora Laplasa pri $l=1$ v spetsialnom skalyarnom proizvedenii”, Zap. nauchn. semin. POMI, 434, 2015
[13] B. F. Schutz, Geometrical methods of mathematical physics, Cambridge University Press, 1982; E. L. Hill, “The Theory of Vector Spherical Harmonics”, Am. J. Phys., 22 (1954) | DOI | MR | Zbl
[14] T. A. Bolokhov, “Rasshireniya kvadratichnoi formy vektornogo poperechnogo operatora Laplasa”, Zap. nauchn. semin. POMI, 433, 2015
[15] T. A. Bolokhov, “Skalyarnye proizvedeniya dlya regulyarnykh analiticheskikh vektorov operatora Laplasa v solenoidalnom podprostranstve”, Zap. nauchn. semin. POMI, 473, 2018