Enumerative combinatorics of $XX0$ Heisenberg chain
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 53-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper the enumeration of a certain class of directed lattice paths is based on the analysis of dynamical correlation functions of the exactly solvable $XX0$ model. This model is the zero anisotropy limit of one of the basic models of the theory of integrable systems, the $XXZ$ Heisenberg magnet. We demonstrate that the considered correlation functions under different boundary conditions are the exponential generating functions of the different types of paths, Dyck and Motzkin in particular.
@article{ZNSL_2019_487_a3,
     author = {N. M. Bogoliubov},
     title = {Enumerative combinatorics of $XX0$ {Heisenberg} chain},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--67},
     year = {2019},
     volume = {487},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a3/}
}
TY  - JOUR
AU  - N. M. Bogoliubov
TI  - Enumerative combinatorics of $XX0$ Heisenberg chain
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 53
EP  - 67
VL  - 487
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a3/
LA  - en
ID  - ZNSL_2019_487_a3
ER  - 
%0 Journal Article
%A N. M. Bogoliubov
%T Enumerative combinatorics of $XX0$ Heisenberg chain
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 53-67
%V 487
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a3/
%G en
%F ZNSL_2019_487_a3
N. M. Bogoliubov. Enumerative combinatorics of $XX0$ Heisenberg chain. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 53-67. http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a3/

[1] S. G. Mohanty, Lattice Path Counting and Applications, Academic Press, New York, 1979 | MR | Zbl

[2] T. V. Narayana, “Lattice Path Combinatorics With Statistical Applications”, Math. Expositions, 23, Univ. of Toronto Press, Toronto, 1979 | MR | Zbl

[3] R. Stanley, Enumerative combinatorics, v. 1, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[4] R. Stanley, Enumerative combinatorics, v. 2, Cambridge University Press, Cambridge, 1999 | MR

[5] C. Krattenthaler, “Lattice path enumeration”, Handbook of enumerative combinatorics (Boca Raton), Discrete Math. Appl., CRC Press, Boca Raton, FL, 2015, 589–678 | MR | Zbl

[6] C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Tuan Nguyen, M. Wallner, “Explicit formulas for enumeration of lattice paths: basketball and the kernel method”, Lattice Path Combinatorics and Applications, Developments in Mathematics, eds. G. E. Andrews, C. Krattenthaler, A. Krinik, Springer-Verlag, Cham, 2019, 78–118 | DOI | MR | Zbl

[7] A. Ayyer, D. Zeilberger, “The number of [old-time] basketball games with final score nn where the home team was never losing but also never ahead by more than w points”, Electron. J. Combin., 14 (2007), 19 | DOI | MR

[8] J. Bettinelli, É. Fusy, C. Mailler, L. Randazzo, “A bijective study of basketball walks”, Sémin. Lothar. Comb., 77 (2016), 24 pp. | MR | Zbl

[9] G. Cicuta1, M. Contedini, L. Molinari, “Enumeration of simple random walks and tridiagonal matrices”, J. Phys. A: Math. Gen., 35 (2002), 1125 | DOI | MR | Zbl

[10] S. Felsner, D. Heldt, “Lattice path enumeration and Toeplitz matrices”, J. Integer Sequences, 18 (2015), 15.1.3 | MR | Zbl

[11] E. Deutsch, “Dyck path enumeration”, Discrete Math., 204 (1999), 167 | DOI | MR | Zbl

[12] F. Bernhart, “Catalan, Motzkin and Riordan numbers”, Discrete Math., 204 (1999), 73 | DOI | MR | Zbl

[13] R. Movassagh, P. W. Shor, “Power law violation of the area law in quantum spin chains”, Proc. Natl. Acad. Sci., 113 (2016), 13278 | DOI | MR | Zbl

[14] O. Salberger, P. Padmanabhan, V. Korepin, Non-Interacting Motzkin Chain-Periodic Boundary Conditions, arXiv: 1809.00709

[15] T. Dana-Picard, “Integral presentations of Catalan numbers and Wallis formula”, Internat. J. Math. Ed. Sci. Tech., 42 (2011), 122 | DOI | MR | Zbl

[16] F. Qi, B. Guo, “Integral representations of the Catalan numbers and their applications”, Multidisciplinary Digital Publishing Institute, 5 (2017)

[17] P. McCalla, A. Nkwanta, Catalan and Motzkin Integral Representations, arXiv: 1901.07092v1

[18] N. M. Bogolyubov, “Boxed plane partitions as an exactly solvable boson model”, Journ. Phys. A: Math. Gen, 38 (2005), 9415 | DOI | MR | Zbl

[19] N. M. Bogoliubov, “$XX0$ Heisenberg chain and random walks”, J. Math. Sci. (N. Y.), 138 (2006), 5636 | DOI | MR

[20] N. M. Bogoliubov, “Form factors, plane partitions and random walks”, J. Math. Sci. (NY), 158 (2009), 771 | DOI | MR | Zbl

[21] N. M. Bogoliubov, J. Timonen, “Correlation functions for a strongly coupled boson system and plane partitions”, Philosophical Transactions A, 369 (2011), 1319 | DOI | MR | Zbl

[22] N. M. Bogoliubov, C. L. Malyshev, “The correlation functions of the XXZ Heisenberg chain for zero or infinite anisotropy, and random walks of vicious walkers”, St. Petersburg Math. J., 22 (2011), 359 | DOI | MR | Zbl

[23] N. M. Bogoliubov, C. Malyshev, “Correlation functions of $XX0$ Heisenberg chain, q-binomial determinants, and random walks”, Nucl. Phys. B, 879 (2014), 268 | DOI | MR | Zbl

[24] N. M. Bogoliubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Survey, 70 (2015), 789 | DOI | MR | Zbl

[25] N. M. Bogoliubov, C. Malyshev, “The phase model and the norm-trace generating function of plane partitions”, J. Stat. Mech.: Theory and Experiment, 2018 (2018), 083101 | DOI | MR

[26] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://oeis.org [A002426]

[27] H. Wilf, Generatingfunctionology, Academic Press, 1990 | MR | Zbl