Boundary polarization of the rational six-vertex model on a semi-infinite lattice
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 167-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the six-vertex model on a finite square lattice with the so-called partial domain wall boundary conditions. For the case of the rational Boltzmann weights, we compute the polarization on the free boundary of the lattice. For the finite lattice the result is given in terms of a ratio of determinants. In the limit where the side of the lattice with the free boundary tends to infinity (the limit of a semi-infinite lattice), they simplify and can be evaluated in a closed form.
@article{ZNSL_2019_487_a10,
     author = {M. D. Minin and A. G. Pronko},
     title = {Boundary polarization of the rational six-vertex model on a semi-infinite lattice},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--186},
     year = {2019},
     volume = {487},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a10/}
}
TY  - JOUR
AU  - M. D. Minin
AU  - A. G. Pronko
TI  - Boundary polarization of the rational six-vertex model on a semi-infinite lattice
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 167
EP  - 186
VL  - 487
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a10/
LA  - en
ID  - ZNSL_2019_487_a10
ER  - 
%0 Journal Article
%A M. D. Minin
%A A. G. Pronko
%T Boundary polarization of the rational six-vertex model on a semi-infinite lattice
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 167-186
%V 487
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a10/
%G en
%F ZNSL_2019_487_a10
M. D. Minin; A. G. Pronko. Boundary polarization of the rational six-vertex model on a semi-infinite lattice. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 167-186. http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a10/

[1] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A, 35 (2002), 5525–5541 | DOI | MR | Zbl

[2] F. Colomo, A. G. Pronko, “The role of orthogonal polynomials in the six-vertex model and its combinatorial applications”, J. Phys. A, 39 (2006), 9015–9033 | DOI | MR | Zbl

[3] N. M. Bogoliubov, C. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70 (2015), 789–856 | DOI | MR | Zbl

[4] F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700 | DOI | MR | Zbl

[5] F. Colomo, A. Sportiello, “Arctic curves of the six-vertex model on generic domains: the Tangent Method”, J. Stat. Phys., 164 (2016), 1488–1523 | DOI | MR | Zbl

[6] F. Colomo, A. G. Pronko, “Third-order phase transition in random tilings”, Phys. Rev. E, 88 (2013), 042125 | DOI

[7] F. Colomo, A. G. Pronko, “Thermodynamics of the six-vertex model in an L-shaped domain”, Comm. Math. Phys., 339 (2015), 699–728 | DOI | MR | Zbl

[8] F. Colomo, A. G. Pronko, A. Sportiello, “Arctic curve of the free-fermion six-vertex model in an L-shaped domain”, J. Stat. Phys., 174 (2019), 1–27 | DOI | MR | Zbl

[9] I. Lyberg, V. Korepin, G. A. P. Ribeiro, J. Viti, “Phase separation in the six-vertex model with a variety of boundary conditions”, J. Math. Phys., 59 (2018), 053301 | DOI | MR | Zbl

[10] O. Foda, M. Wheeler, “Partial domain wall partition functions”, JHEP, 2012:7 (2012), 186 | DOI | MR | Zbl

[11] P. Bleher, K. Liechty, “Six-vertex model with partial domain wall boundary conditions: Ferroelectric phase”, J. Math. Phys., 56 (2015), 023302 | DOI | MR | Zbl

[12] A. G. Pronko, G. P. Pronko, “Off-shell Bethe states and the six-vertex model”, J. Math. Sci. (N.Y.), 242 (2019), 742–752 | DOI | MR | Zbl

[13] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[14] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, San Diego, CA, 1982 | MR | Zbl

[15] V. E. Korepin, “Calculations of norms of Bethe wave functions”, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[16] A. G. Izergin, “Partition function of the six-vertex model in the finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | MR | Zbl

[17] A. G. Izergin, D. A. Coker, V. E. Korepin, “Determinant formula for the six-vertex model”, J. Phys. A, 25 (1992), 4315–4334 | DOI | MR | Zbl

[18] L.-H. Gwa, H. Spohn, “Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian”, Phys. Rev. Lett., 68 (1992), 725–728 | DOI | MR | Zbl

[19] M. L. Mehta, J.-M. Normand, “Probability density of the determinant of a random hermitian matrix”, J. Phys. A, 31 (1998), 5377–5391 | DOI | MR | Zbl