@article{ZNSL_2019_487_a10,
author = {M. D. Minin and A. G. Pronko},
title = {Boundary polarization of the rational six-vertex model on a semi-infinite lattice},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {167--186},
year = {2019},
volume = {487},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a10/}
}
M. D. Minin; A. G. Pronko. Boundary polarization of the rational six-vertex model on a semi-infinite lattice. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 167-186. http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a10/
[1] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A, 35 (2002), 5525–5541 | DOI | MR | Zbl
[2] F. Colomo, A. G. Pronko, “The role of orthogonal polynomials in the six-vertex model and its combinatorial applications”, J. Phys. A, 39 (2006), 9015–9033 | DOI | MR | Zbl
[3] N. M. Bogoliubov, C. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70 (2015), 789–856 | DOI | MR | Zbl
[4] F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700 | DOI | MR | Zbl
[5] F. Colomo, A. Sportiello, “Arctic curves of the six-vertex model on generic domains: the Tangent Method”, J. Stat. Phys., 164 (2016), 1488–1523 | DOI | MR | Zbl
[6] F. Colomo, A. G. Pronko, “Third-order phase transition in random tilings”, Phys. Rev. E, 88 (2013), 042125 | DOI
[7] F. Colomo, A. G. Pronko, “Thermodynamics of the six-vertex model in an L-shaped domain”, Comm. Math. Phys., 339 (2015), 699–728 | DOI | MR | Zbl
[8] F. Colomo, A. G. Pronko, A. Sportiello, “Arctic curve of the free-fermion six-vertex model in an L-shaped domain”, J. Stat. Phys., 174 (2019), 1–27 | DOI | MR | Zbl
[9] I. Lyberg, V. Korepin, G. A. P. Ribeiro, J. Viti, “Phase separation in the six-vertex model with a variety of boundary conditions”, J. Math. Phys., 59 (2018), 053301 | DOI | MR | Zbl
[10] O. Foda, M. Wheeler, “Partial domain wall partition functions”, JHEP, 2012:7 (2012), 186 | DOI | MR | Zbl
[11] P. Bleher, K. Liechty, “Six-vertex model with partial domain wall boundary conditions: Ferroelectric phase”, J. Math. Phys., 56 (2015), 023302 | DOI | MR | Zbl
[12] A. G. Pronko, G. P. Pronko, “Off-shell Bethe states and the six-vertex model”, J. Math. Sci. (N.Y.), 242 (2019), 742–752 | DOI | MR | Zbl
[13] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[14] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, San Diego, CA, 1982 | MR | Zbl
[15] V. E. Korepin, “Calculations of norms of Bethe wave functions”, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[16] A. G. Izergin, “Partition function of the six-vertex model in the finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | MR | Zbl
[17] A. G. Izergin, D. A. Coker, V. E. Korepin, “Determinant formula for the six-vertex model”, J. Phys. A, 25 (1992), 4315–4334 | DOI | MR | Zbl
[18] L.-H. Gwa, H. Spohn, “Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian”, Phys. Rev. Lett., 68 (1992), 725–728 | DOI | MR | Zbl
[19] M. L. Mehta, J.-M. Normand, “Probability density of the determinant of a random hermitian matrix”, J. Phys. A, 31 (1998), 5377–5391 | DOI | MR | Zbl