On extensions of canonical symplectic structure from coadjoint orbit of complex general linear group
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 28-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of the extensions of the canonical Lee–Poisson–Kirillov–Kostant symplectic structure of the coadjoint orbit of the complex general linear group is considered. The introduced method uses the concept of the flag coordinates and does not depend on the Jordan structure of matrices forming the orbit. The principal bundle associated with the fibration of the orbit over the Grassmanian of flags is constructed.
@article{ZNSL_2019_487_a1,
     author = {M. V. Babich},
     title = {On extensions of canonical symplectic structure from coadjoint orbit of complex general linear group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {28--39},
     year = {2019},
     volume = {487},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a1/}
}
TY  - JOUR
AU  - M. V. Babich
TI  - On extensions of canonical symplectic structure from coadjoint orbit of complex general linear group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 28
EP  - 39
VL  - 487
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a1/
LA  - en
ID  - ZNSL_2019_487_a1
ER  - 
%0 Journal Article
%A M. V. Babich
%T On extensions of canonical symplectic structure from coadjoint orbit of complex general linear group
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 28-39
%V 487
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a1/
%G en
%F ZNSL_2019_487_a1
M. V. Babich. On extensions of canonical symplectic structure from coadjoint orbit of complex general linear group. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 28-39. http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a1/

[1] S. E. Derkachov, A. N. Manashov, “R-matrix and baxter Q-operators for the noncompact $SL(N,C)$ invariant spin chain”, SIGMA, 2:2006, 084, 20 pp. | MR | Zbl

[2] M. V. Babich, S. E. Derkachov, “On rational symplectic parametrization of coajoint orbit of $GL(N)$. Diagonalizable case”, Algebra Analiz, 22:3 (2010), 16–30 (in Russian) | MR

[3] M. V. Babich, “Birational darboux coordinates on $($Co$)$adjoint orbits of $GL(N,\mathbb{CC})$”, Funct. Anal. Appl., 50:1 (2016), 17–30 | DOI | MR | Zbl

[4] M. V. Babich, “On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups”, Zap. Nauchn. Semin. POMI, 432, 2015, 36–57 ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v432/p068.pdf | MR | Zbl

[5] M. V. Babich, “Young tableaux and stratification of space of complex square matrices”, Zap. Nauchn. Semin. POMI, 433, 2015, 41–64 ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v433/p041.pdf | MR

[6] M. V. Babich, “About coordinates on the phase spaces of the Schlesinger system and the Garnier–Painlevé $6$ system”, Dokl. Math., 75:1 (2007), 71 | DOI | MR | Zbl

[7] M. Bertolla, D. Korotkin, Symplectic extensions of the Kirillov–Kostant and Goldman Poisson structures and fuchsian systems, arXiv: 1903.09197 [math-ph]

[8] V. I. Arnold, Mathematical methods of classical mechanics, Springer–Verlag, 1978, 462 pp. | MR | Zbl

[9] A. G. Reiman, M. A. Semenov-Tyan'-Shanskii, Integrable systems. Group-theoretic approach, Inst. Comput. Research, M.–Izhevsk, 2003 (in Russian)

[10] I. M. Gelfand, M. I. Najmark, “Unitary representation of classical groups”, Mat. Inst. V. A. Steklova (LOMI), 36, 1950 (in Russian) | MR | Zbl