@article{ZNSL_2019_487_a1,
author = {M. V. Babich},
title = {On extensions of canonical symplectic structure from coadjoint orbit of complex general linear group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {28--39},
year = {2019},
volume = {487},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a1/}
}
M. V. Babich. On extensions of canonical symplectic structure from coadjoint orbit of complex general linear group. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 28-39. http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a1/
[1] S. E. Derkachov, A. N. Manashov, “R-matrix and baxter Q-operators for the noncompact $SL(N,C)$ invariant spin chain”, SIGMA, 2:2006, 084, 20 pp. | MR | Zbl
[2] M. V. Babich, S. E. Derkachov, “On rational symplectic parametrization of coajoint orbit of $GL(N)$. Diagonalizable case”, Algebra Analiz, 22:3 (2010), 16–30 (in Russian) | MR
[3] M. V. Babich, “Birational darboux coordinates on $($Co$)$adjoint orbits of $GL(N,\mathbb{CC})$”, Funct. Anal. Appl., 50:1 (2016), 17–30 | DOI | MR | Zbl
[4] M. V. Babich, “On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups”, Zap. Nauchn. Semin. POMI, 432, 2015, 36–57 ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v432/p068.pdf | MR | Zbl
[5] M. V. Babich, “Young tableaux and stratification of space of complex square matrices”, Zap. Nauchn. Semin. POMI, 433, 2015, 41–64 ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v433/p041.pdf | MR
[6] M. V. Babich, “About coordinates on the phase spaces of the Schlesinger system and the Garnier–Painlevé $6$ system”, Dokl. Math., 75:1 (2007), 71 | DOI | MR | Zbl
[7] M. Bertolla, D. Korotkin, Symplectic extensions of the Kirillov–Kostant and Goldman Poisson structures and fuchsian systems, arXiv: 1903.09197 [math-ph]
[8] V. I. Arnold, Mathematical methods of classical mechanics, Springer–Verlag, 1978, 462 pp. | MR | Zbl
[9] A. G. Reiman, M. A. Semenov-Tyan'-Shanskii, Integrable systems. Group-theoretic approach, Inst. Comput. Research, M.–Izhevsk, 2003 (in Russian)
[10] I. M. Gelfand, M. I. Najmark, “Unitary representation of classical groups”, Mat. Inst. V. A. Steklova (LOMI), 36, 1950 (in Russian) | MR | Zbl