@article{ZNSL_2019_487_a0,
author = {N. V. Antonov and M. M. Kostenko},
title = {Renormalization group in the problem of active scalar advection},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--27},
year = {2019},
volume = {487},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a0/}
}
N. V. Antonov; M. M. Kostenko. Renormalization group in the problem of active scalar advection. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 26, Tome 487 (2019), pp. 5-27. http://geodesic.mathdoc.fr/item/ZNSL_2019_487_a0/
[1] D. Forster, D. R. Nelson, M. J. Stephen, “Large-distance and long-time properties of a randomly stirred fluid”, Phys. Rev., 16 (1977), 732 | DOI | MR
[2] D. Forster, D. R. Nelson, M. J. Stephen, “Long-time tails and the large-eddy behavior of a randomly stirred fluid”, Phys. Rev. Lett., 36 (1976), 867 | DOI
[3] M. Kardar, G. Parisi, Y.-C. Zhang, “Dynamic Scaling of Growing Interfaces”, Phys. Rev. Lett., 56 (1986), 889 | DOI | Zbl
[4] S. Grossmann, E. Schnedler, “Fluctuation corrections of the turbulence spectrum by renormalization group methods”, Z. Phys., 26 (1977), 307–317
[5] P. C. Martin, C. De Dominicis, “The long distance behavior of randomly stirred fluids”, Progr. Theor. Phys. Suppl., 64 (1978), 108–123 | DOI
[6] C. De Dominicis, P.C. Martin, “Energy spectra of certain randomly stirred fluid”, Phys. Rev. A, 19 (1979), 419 | DOI
[7] P. L. Sulem, J.-D. Fournier, A. Pouquet, “Fully developed turbulence and renormalization group”, Lecture Notes in Physics, 104, Springer, Berlin, 1979, 91
[8] T. Nakano, F. Tanaka, “Effects of large-scale fluctuations in fully developed turbulence”, Progr. Theor. Phys., 65 (1981), 120–139 | DOI
[9] J.-D. Fournier, P.L. Sulem, A. Pouquet, “Infrared properties of forced magnetohydrodynamic turbulence”, J. Phys. A: Math. Gen., 15 (1982), 1393–1420 | DOI | Zbl
[10] J.-D. Fournier, U. Frisch, “Remarks on renormalization group in statistical fluid dynamics”, Phys. Rev. A, 28 (1983), 1000–1002 | DOI
[11] L. Ts. Adzhemyan, A. N. Vasil'ev, Yu. M. Pis'mak, “Renormalization-group approach in the theory of turbulence: The dimensions of composite operators”, Theor. Math. Phys., 57 (1983), 1131–1141 | DOI | MR | Zbl
[12] L. Canet, B. Delamotte, N. Wschebor, “Fully developed isotropic turbulence: Symmetries and exact identities”, Phys. Rev. E, 91 (2015), 053004 ; “Fully developed isotropic turbulence: Nonperturbative renormalization group formalism and fixed-point solution”, Phys. Rev. E, 93 (2016), 063101 | DOI | MR | DOI
[13] C. Mejía-Monasterio, P. Muratore Ginanneschi, “Nonperturbative renormalization group study of the stochastic Navier-Stokes equation”, Phys. Rev. E, 86 (2012), 016315 | DOI
[14] A. A. Fedorenko, P. Le Doussal, K. J. Wiese, “Functional renormalization-group approach to decaying turbulence”, J. Stat. Mech., 2013, P04014 | DOI | MR
[15] S. L. Ogarkov, On Functional and Holographic Renormalization Group Methods in Stochastic Theory of Turbulence, 2016, arXiv: 1605.07560 [hep-th]
[16] M. Tarpin, L. Canet, C. Pagani, N. Wschebor, Stationary, isotropic and homogeneous two-dimensional turbulence: a first non-perturbative renormalization group approach, 2018, arXiv: 1809.00909 [cond-mat.stat-mech] | MR
[17] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, The Field Theoretic Renormalization Group in Fully Developed Turbulence, Gordon and Breach, London, 1999 | MR | Zbl
[18] A. N. Vasiliev, The Field Theoretic Renormalization Group in Critical Behaviour Theory and Stochastic Dynamics, Chapman Hall/CRC, Boca Raton, 2004, 681 pp. | MR
[19] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, “Quantum field renormalization group in the theory of fully developed turbulence”, Physics-Uspekhi, 39 (1193), 1193 | DOI
[20] N. V. Antonov, “Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection”, J. Phys. A: Math. Gen., 39 (2006), 7825 | DOI | MR | Zbl
[21] M. Hnatič, J. Honkonen, T. Lučivjanský, “Advanced field-theoretical methods in stochastic dynamics and theory of developed turbulence”, Acta Physica Slovaca, 66 (2016), 69
[22] S. A. Orszag, “Statistical theory of turbulence in fluids dynamics”, Fluid Dynamics, Les Houches Summer School of Theoretical Physics (1973), eds. R. Balian, J.-L. Peube, Gordon and Breach, London, 1977, 235 | MR
[23] A. N. Vasiliev, Functional Methods in Quantum Field Theory and Statistical Physics, CRC Press, 1998 | MR
[24] H. W. Wyld, Jr., “Formulation of the theory of turbulence in an incompressible fluid”, Ann. Phys., 14 (1961), 143–165 | DOI | MR | Zbl
[25] V. I. Belinicher, V. S. L'vov, “Scale-invariant theory of developed hydrodynamic turbulence”, Sov. Phys. JETP, 66 (1987), 303; V. S. L'vov, “Scale invariant-theory of fully-developed hydrodynamic turbulence”, Phys. Rep., 207 (1991), 1 | DOI | MR
[26] V. S. L'vov, I. Procaccia, “Towards a nonperturbative theory of hydrodynamic turbulence: Fusion rules, exact bridge relations, and anomalous viscous scaling functions”, Phys. Rev. E, 54 (1996), 6268 | DOI | MR
[27] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[28] R. H. Kraichnan, “Small-scale structure of a scalar field convected by turbulence”, Phys. Fluids, 11 (1968), 945–953 ; “Anomalous scaling of a randomly advected passive scalar”, Phys. Rev. Lett., 72 (1994), 1016 ; “Passive scalar: scaling exponents and realizability”, Phys. Rev. Lett., 78 (1997), 4922 | DOI | Zbl | DOI | DOI
[29] G. Falkovich, K. Gawȩdzki, M. Vergassola, “Particles and fields in fluid turbulence”, Rev. Mod. Phys., 73 (2001), 913 | DOI | MR | Zbl
[30] M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev, “Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive Scalar”, Phys. Rev. E, 52 (1995), 4924 ; M. Chertkov, G. Falkovich, “Anomalous scaling exponents of a white-advected passive scalar”, Phys. Rev. Lett., 76 (1996), 2706 ; M. Chertkov, G. Falkovich, “Anomalous scaling exponents of a white-advected passive scalar”, Phys. Rev. Lett., 76 (1996), 2706 | DOI | MR | DOI
[31] K. Gawedzki, A. Kupiainen, “Anomalous scaling of the passive scalar”, Phys. Rev. Lett., 75 (1995), 3834 ; D. Bernard, K. Gaw edzki, A. Kupiainen, “Anomalous scaling in the $N$-point functions of passive Scalar”, Phys. Rev. E, 54 (1996), 2564 | DOI | DOI | MR
[32] U. Frisch, A. Mazzino, M. Vergassola, “Intermittency in passive scalar advection”, Phys. Rev. Lett., 80 (1998), 5532 ; U. Frisch, A. Mazzino, A. Noullez, M. Vergassola, “Lagrangian method for multiple correlations in passive scalar advection”, Phys. Fluids, 11 (1999), 2178 ; A. Mazzino, P. Muratore Ginanneschi, “Passive scalar turbulence in high dimensions”, Phys. Rev. E, 63 (2000), 015302 | DOI | DOI | MR | Zbl | DOI
[33] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, Phys. Rev. E, 58 (1998), 1823 | DOI | MR
[34] D. J. Amit, Field Theory, Renormalization Group, and Critical Phenomena, 2nd edition, World Scientific, Singapore, 1984 | MR
[35] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, 1989, 1008 pp. | MR
[36] L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, A. N. Vasil'ev, “Anomalous exponents in the rapid-change model of the passive scalar advection in the order $\varepsilon^3$”, Phys. Rev. E, 63 (2001), 025303(R) | DOI
[37] L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, “Anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: Two-loop approximation”, Phys. Rev. E, 66 (2002), 036313 | DOI | MR
[38] L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, T. L. Kim, “Anomalous scaling of a passive scalar advected by the Navier–Stokes velocity field: Two-loop approximation”, Phys. Rev. E, 71 (2005), 016303 | DOI | MR
[39] R. Ruiz, D. R. Nelson, “Turbulence in binary fluid mixtures”, Phys. Rev. A, 23 (1981), 3224 | DOI
[40] A. Aronowitz, D. R. Nelson, “Turbulence in phase-separating binary mixtures”, Phys. Rev. A, 29 (1984), 2012 | DOI
[41] M. K. Nandy, J. K. Bhattacharjee, “Renormalization-group analysis for the infrared properties of a randomly stirred binary fluid”, J. Phys. A: Math. Gen., 31 (1998), 2621–2637 | DOI | MR | Zbl
[42] A. Celani, M. Cencini, A. Mazzino, M. Vergassola, “Active versus passive scalar turbulence”, Phys. Rev. Lett., 89 (2002), 234502 | DOI
[43] A. Celani, M. Cencini, A. Mazzino, M. Vergassola, “Active and passive fields face to face”, New J. Phys., 6 (2004), 72 | DOI
[44] A. Celani, M. Vergassola, “Statistical geometry in scalar turbulence”, Phys. Rev. Lett., 86 (2001), 424 | DOI
[45] I. Arad, L. Biferale, A. Celani, I. Procaccia, M. Vergassola, “Statistical conservation laws in turbulent transport”, Phys. Rev. Lett., 87 (2001), 164502 | DOI
[46] E. S. C. Ching, Y. Cohen, T. Gilbert, I. Procaccia, “Active and passive fields in turbulent transport: The role of statistically preserved structures”, Phys. Rev. E, 67 (2003), 016304 | DOI | MR
[47] A. Kupiainen, P. Muratore-Ginanneschi, “Scaling, renormalization and statistical conservation laws in the Kraichnan model of turbulent advection”, J. Stat. Phys., 126 (2007), 669–724 | DOI | MR | Zbl
[48] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, “Infrared divergences and the renormalization group in the theory of fully developed turbulence”, Sov. Phys. JETP, 68 (1989), 733–742 | MR
[49] P. C. Hohenberg, B. I. Halperin, “Theory of dynamic critical phenomena”, Rev. Mod. Phys., 49 (1977), 435 | DOI
[50] R. Folk, G. Moser, “Critical dynamics: a field-theoretical approach”, J. Phys. A: Math. Gen., 39 (2006), 207–313 | DOI | MR
[51] N. V. Antonov, P. I. Kakin, “Random interface growth in random environment: Renormalization group analysis of a simple model”, Theor. Math. Phys., 185 (2015), 1391–1407 | DOI | MR | Zbl
[52] N. V. Antonov, M. M. Kostenko, “Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble: Effects of strong compressibility and large-scale anisotropy”, Phys. Rev. E, 90 (2014), 063016 | DOI | MR
[53] V. Yakhot, “Ultraviolet dynamic renormalization group: Small-scale properties of a randomly stirred fluid”, Phys. Rev. A, 23 (1981), 1486–1497 ; V. Yakhot, “Large-scale properties of unstable systems governed by the Kuramoto-Sivashinksi equation”, Phys. Rev. A, 24 (1981), 642–644 ; G. Sivashinsky, V. Yakhot, “Negative viscosity effect in large-scale flows”, Physics of Fluids, 28 (1985), 1040–1042 | DOI | DOI | DOI | Zbl
[54] G. Pelletier, “Langmuir turbulence as a critical phenomenon. Part 2. Application of the dynamical renormalization group method”, J. Plasma Phys., 24 (1980), 421–443 | DOI
[55] L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich, Yu. M. Pis'mak, “Quantum field renormalization group in the theory of stochastic Langmuir turbulence”, Theor. Math. Phys., 78 (1989), 260–272 | DOI | MR
[56] U. C. Täuber, S. Diehl, “Perturbative field-theoretical renormalization group approach to driven-dissipative Bose-Einstein criticality”, Phys. Rev. X, 4 (2014), 021010; Weigang Liu, U. C. Täuber, “Critical initial-slip scaling for the noisy complex Ginzburg–Landau equation”, J. Phys. A: Math. Theor., 49 (2016), 434001 | DOI | MR | Zbl