Non-asymptotic analysis of Lawley–Hotelling statistic for high dimensional data
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 178-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider General Linear Model (GLM) that includes multivariate analysis of variance (MANOVA) and multiple linear regression as special cases. In practice, there are several widely used criteria for GLM: Wilks’ lambda, Bartlett–Nanda–Pillai test, Lawley–Hotelling test and Roy maximum root test. Limiting distributions for the first three mentioned tests are known under different asymptotic settings. In the present paper we get the computable error bounds for normal approximation of Lawley–Hotelling statistic when dimensionality grows proportionally to sample size. This result enables us to get more precise calculations of the p-values in applications of multivariate analysis. In practice, more and more often analysts encounter situations when the number of factors is large and comparable with the sample size. Examples include medicine, biology (i.e., DNA microarray studies) and finance.
@article{ZNSL_2019_486_a9,
     author = {A. A. Lipatev and V. V. Ulyanov},
     title = {Non-asymptotic analysis of {Lawley{\textendash}Hotelling} statistic for high dimensional data},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {178--189},
     year = {2019},
     volume = {486},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a9/}
}
TY  - JOUR
AU  - A. A. Lipatev
AU  - V. V. Ulyanov
TI  - Non-asymptotic analysis of Lawley–Hotelling statistic for high dimensional data
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 178
EP  - 189
VL  - 486
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a9/
LA  - ru
ID  - ZNSL_2019_486_a9
ER  - 
%0 Journal Article
%A A. A. Lipatev
%A V. V. Ulyanov
%T Non-asymptotic analysis of Lawley–Hotelling statistic for high dimensional data
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 178-189
%V 486
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a9/
%G ru
%F ZNSL_2019_486_a9
A. A. Lipatev; V. V. Ulyanov. Non-asymptotic analysis of Lawley–Hotelling statistic for high dimensional data. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 178-189. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a9/

[1] Y. Fujikoshi, V. V. Ulyanov, R. Shimizu, Multivariate Statistics: High-Dimensional and Large-Sample Approximations, Wiley Series in Probability and Statistics, Wiley, Hoboken, N.J., 2010 | DOI | MR | Zbl

[2] T. W. Anderson, An Introduction to Multivariate Analysis, 3rd ed., Wiley, New York, 2003 | MR | Zbl

[3] Y. Fujikoshi, V. V. Ulyanov, R. Shimizu, “$L_{1}$-norm error bounds for asymptotic expansions of multivariate scale mixtures and their applications to Hotelling's generalized $T_{0}^{2}$”, J. Multivariate Anal., 96:1 (2005), 1–19 | DOI | MR | Zbl

[4] H. Wakaki, Y. Fujikoshi, V. V. Ulyanov, “Asymptotic expansions of the distributions of MANOVA test statistics when the dimension is large”, Hiroshima Math. J., 44:3 (2014), 247–259 | DOI | MR | Zbl

[5] I. D. Coope, “On matrix trace inequalities and related topics for products of Hermitian matrices”, J. Math. Anal. Appl., 188:3 (1949), 999–1001 | DOI | MR

[6] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, 1964 | MR

[7] I. G. Shevtsova, On the absolute constants in the Berry–Esseen type inequalities for identically distributed summands, 2011, arXiv: 1111.6554v1 | MR

[8] Yu. Kavaguchi, V. V. Ulyanov, Ya. Fudzhikoshi, “Priblizheniya dlya statistik, opisyvayuschikh geometricheskie svoistva dannykh bolshoi razmernosti, s otsenkami oshibok”, Informatika i ee primen., 4:1 (2010), 22–27

[9] V. V. Ulyanov, H. Wakaki, Y. Fujikoshi, “Berry-Esseen bound for high dimensional asymptotic approximation of Wilks' Lambda distribution”, Statist. and Probab. Letters, 76:12 (2006), 1191–1200 | DOI | MR | Zbl