An extension of local time
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 148-157

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct an analog of a local time for an arbitrary Levy process with the finite second moment. When our process is a Wiener process this object coincides with the local time.
@article{ZNSL_2019_486_a7,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {An extension of local time},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--157},
     publisher = {mathdoc},
     volume = {486},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a7/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - An extension of local time
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 148
EP  - 157
VL  - 486
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a7/
LA  - ru
ID  - ZNSL_2019_486_a7
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T An extension of local time
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 148-157
%V 486
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a7/
%G ru
%F ZNSL_2019_486_a7
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. An extension of local time. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 148-157. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a7/