@article{ZNSL_2019_486_a6,
author = {M. S. Ermakov},
title = {On uniform consistency of nonparametric tests},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--147},
year = {2019},
volume = {486},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a6/}
}
M. S. Ermakov. On uniform consistency of nonparametric tests. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 98-147. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a6/
[1] T. Anderson, “The integral of a symmetric unimodal function”, Proc. Amer. Math. Soc., 6:1 (1955), 170–176 | DOI | MR | Zbl
[2] F. Autin, M. Clausel, J. Jean-Marc Freyermuth, C. Marteau, Maxiset point of view for signal detection in inverse problems, 2018, arXiv: 1803.05875 | MR
[3] A. Cohen, R. DeVore, G. Kerkyacharian, D. Picard, “Maximal spaces with given rate of convergence for thresholding algorithms”, Appl. Comput. Harmon. Anal., 11 (2001), 167–191 | DOI | MR | Zbl
[4] H. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, 1996 | MR | Zbl
[5] M. S. Ermakov, “Minimaksnoe obnaruzhenie signala v gaussovskom belom shume”, Teoriya veroyatn. i ee primen., 35:4 (1990), 704–715 | MR
[6] M. S. Ermakov, “Asimptoticheskaya minimaksnost kriteriev khi-kvadrat”, Teoriya veroyatn. i ee primen., 42:4 (1997), 668–695 | DOI | MR | Zbl
[7] M. S. Ermakov, “On asymptotic minimaxity of kernel-based tests”, ESAIM Probab. Stat., 7 (2003), 279–312 | DOI | MR | Zbl
[8] M. S. Ermakov, “Minimaksnoe obnaruzhenie signala v vesovom gaussovskom belom shume”, Zap. nauchn. sem. POMI, 320, 2004, 54–68 | Zbl
[9] M. S. Ermakov, “O sostoyatelnoi proverke gipotez”, Zap. nauchn. sem. POMI, 442, 2015, 48–74
[10] M. S. Ermakov, “Ob asimptoticheski minimaksnom obnaruzhenii signala v gaussovskom belom shume”, Zap. nauchn. sem. POMI, 474, 2018, 124–138
[11] I. A. Ibragimov, R. Z. Khasminskii, “Ob otsenke beskonechnomernogo parametra v gaussovom belom shume”, Dokl. AN SSSR, 236:5 (1977), 1053–1055 | MR | Zbl
[12] Yu. I. Ingster, “O sravnenii minimaksnykh svoistv testov Kolmogorova, $\omega^2$ i $\chi^2$”, Teoriya veroyatn. i ee primen., 32:2 (1987), 374–378 | MR | Zbl
[13] Yu. I. Ingster, I. A. Suslina, Nonparametric Goodness-of-fit Testing under Gaussian Models, Lecture Notes in Statistics, 169, Springer, N.Y., 2002 | MR
[14] I. M. Johnstone, Gaussian estimation. Sequence and wavelet models, Book Draft, 2015 http://statweb.stanford.edu/ĩmj/
[15] G. Kerkyacharian, D. Picard, “Density estimation by kernel and wavelets methods: optimality of Besov spaces”, Statist. Probab. Lett., 18 (1993), 327–336 | DOI | MR | Zbl
[16] G. Kerkyacharian, D. Picard, Minimax or maxisets?, Bernoulli, 8 (2002), 219–253 | MR | Zbl
[17] L. Le Cam, L. Schwartz, “A necessary and sufficient conditions for the existence of consistent estimates”, Ann. Math. Statist., 31 (1960), 140–150 | DOI | MR | Zbl
[18] L. Le Cam, “Convergence of estimates under dimensionality restrictions”, Ann. Statist., 1 (1973), 38–53 | DOI | MR | Zbl
[19] E. L. Lehmann, J. P. Romano, Testing Statistical Hypothesis, Springer Verlag, NY, 2005 | MR
[20] V. Rivoirard, “Maxisets for linear procedures”, Statist. Probab. Lett., 67 (2004), 267–275 | DOI | MR | Zbl
[21] G. R. Shorack, J. A. Wellner, Empirical Processes with Application to Statistics, J. Wiley Sons, NY, 1986 | MR
[22] L. Schwartz, “On Bayes procedures”, Z. Wahrsch. Verw. Gebiete, 4 (1965), 10–26 | DOI | MR | Zbl
[23] A. Tsybakov, Introduction to Nonparametric Estimation, Springer, Berlin, 2009 | MR | Zbl
[24] P. L. Ulyanov, “O ryadakh Khaara”, Matem. sb., 63(105):2 (1964), 356–391 | Zbl
[25] D. M. Chibisov, “K issledovaniyu asimptoticheskoi moschnosti kriteriev soglasiya”, Teoriya veroyatn. i ee primen., 10:3 (1965), 460–478