Estimation of a vector valued function in a Gaussian stationary noise
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 275-285

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we construct the lower bound of the minimax risk in the estimation problem, as we observe the unknoun pseudo-periodic vector-function in a Gaussian stationary noise with the spectral density satisfying the vector version of the Muckenhoupt condition.
@article{ZNSL_2019_486_a17,
     author = {V. N. Solev},
     title = {Estimation of a vector valued function in a {Gaussian} stationary noise},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {275--285},
     publisher = {mathdoc},
     volume = {486},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a17/}
}
TY  - JOUR
AU  - V. N. Solev
TI  - Estimation of a vector valued function in a Gaussian stationary noise
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 275
EP  - 285
VL  - 486
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a17/
LA  - ru
ID  - ZNSL_2019_486_a17
ER  - 
%0 Journal Article
%A V. N. Solev
%T Estimation of a vector valued function in a Gaussian stationary noise
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 275-285
%V 486
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a17/
%G ru
%F ZNSL_2019_486_a17
V. N. Solev. Estimation of a vector valued function in a Gaussian stationary noise. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 275-285. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a17/