On the asymptotic behavior of the convolution of distributions with regularly exponentially decreasing tails
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 265-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the note the asymptotic behaviour of the tail of distribution and density of a sum of independent random variables is studying in the case when the tails of the distributions (densities) of the summands decrease exponentially at infinity.
@article{ZNSL_2019_486_a16,
     author = {L. V. Rozovskii},
     title = {On the asymptotic behavior of the convolution of distributions with regularly exponentially decreasing tails},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {265--274},
     year = {2019},
     volume = {486},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a16/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - On the asymptotic behavior of the convolution of distributions with regularly exponentially decreasing tails
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 265
EP  - 274
VL  - 486
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a16/
LA  - ru
ID  - ZNSL_2019_486_a16
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T On the asymptotic behavior of the convolution of distributions with regularly exponentially decreasing tails
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 265-274
%V 486
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a16/
%G ru
%F ZNSL_2019_486_a16
L. V. Rozovskii. On the asymptotic behavior of the convolution of distributions with regularly exponentially decreasing tails. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 265-274. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a16/

[1] A. A. Borovkov, Asimptoticheskii analiz sluchainykh bluzhdanii. Bystro ubyvayuschie raspredeleniya priraschenii, Fizmatlit, M., 2013

[2] A. A. Borovkov, A. A. Mogulskii, “O bolshikh i sverkhbolshikh ukloneniyakh summ nezavisimykh sluchainykh vektorov pri vypolnenii usloviya Kramera”, Teoriya veroyatn. i ee primen., 51:4 (2006), 641–673 | DOI

[3] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984 | MR

[4] D. B. H. Cline, “Convolution tails, product tails and domains of attraction”, Probab. Theory Relat. Fields, 72:4 (1986), 529–557 | DOI | MR | Zbl

[5] A. G. Pakes, “Convolution equivalence and infinite divisibility”, J. Appl. Probab., 41 (2004), 407–424 | DOI | MR | Zbl

[6] S. Zakhari, S. G. Foss, “O tochnoi asimptotike maksimuma sluchainogo bluzhdanmya s prirascheniyami iz odnogo klassa raspredelenii s tonkimi khvostami”, Sib. matem. zhurn., 47:6 (2006), 1265–1274 | MR

[7] S. G. Foss, “O tochnoi asimptotike statsionarnogo raspredeleniya vremeni prebyvaniya v tandeme sistem obsluzhivaniya dlya odnogo klassa raspredelenii s tonkimi khvostami”, Probl. peredachi inform., 43:4 (2007), 93–108 | MR | Zbl

[8] T. Watanabe, “Convolution equivalence and distributions of random sums”, Probab. Theory Relat. Fields, 142 (2008), 367–397 | DOI | MR | Zbl

[9] A. A. Borovkov, Teoriya veroyatnostei, Editorial URSS, M., 1999

[10] L. V. Rozovskii, “O sverkhbolshikh ukloneniyakh summy nezavisimykh sluchainykh velichin s obschim absolyutno nepreryvnym raspredeleniem, udovletvoryayuschim usloviyu Kramera”, Teoriya veroyatn. i ee primen., 48:1 (2003), 78–103 | DOI | MR