Random sections of convex bodies
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 190-199
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider a convex body $D$ in $\mathbb{R}^n$. We obtain an explicit formula expressing the distribution function of the distance between two random points uniformly and independently chosen in $D$ in terms of the distribution function of the length of a random chord of $D$. As a corollary, we derive Kingman's formula which connects the moments of these distributions.
@article{ZNSL_2019_486_a10,
author = {T. Moseeva},
title = {Random sections of convex bodies},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {190--199},
publisher = {mathdoc},
volume = {486},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a10/}
}
T. Moseeva. Random sections of convex bodies. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 190-199. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a10/