Random sections of convex bodies
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 190-199
Cet article a éte moissonné depuis la source Math-Net.Ru
Consider a convex body $D$ in $\mathbb{R}^n$. We obtain an explicit formula expressing the distribution function of the distance between two random points uniformly and independently chosen in $D$ in terms of the distribution function of the length of a random chord of $D$. As a corollary, we derive Kingman's formula which connects the moments of these distributions.
@article{ZNSL_2019_486_a10,
author = {T. Moseeva},
title = {Random sections of convex bodies},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {190--199},
year = {2019},
volume = {486},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a10/}
}
T. Moseeva. Random sections of convex bodies. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 190-199. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a10/
[1] N. Aharonyan, V. Ohanyan, “Moments of the distance between two random points”, Model. Artif. Intell, 10:2 (2016), 64–70
[2] J. Kingman, “Random secants of a convex body”, J. Appl. Probab., 6:3 (1969), 660–672 | DOI | MR | Zbl
[3] L. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley Publishing Company, 1976 | MR | Zbl
[4] R. Schneider, W. Weil, Stochastic and Integral Geometry, Springer–Verlag, 2008 | MR | Zbl