Random sections of convex bodies
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 190-199

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a convex body $D$ in $\mathbb{R}^n$. We obtain an explicit formula expressing the distribution function of the distance between two random points uniformly and independently chosen in $D$ in terms of the distribution function of the length of a random chord of $D$. As a corollary, we derive Kingman's formula which connects the moments of these distributions.
@article{ZNSL_2019_486_a10,
     author = {T. Moseeva},
     title = {Random sections of convex bodies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {190--199},
     publisher = {mathdoc},
     volume = {486},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a10/}
}
TY  - JOUR
AU  - T. Moseeva
TI  - Random sections of convex bodies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 190
EP  - 199
VL  - 486
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a10/
LA  - ru
ID  - ZNSL_2019_486_a10
ER  - 
%0 Journal Article
%A T. Moseeva
%T Random sections of convex bodies
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 190-199
%V 486
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a10/
%G ru
%F ZNSL_2019_486_a10
T. Moseeva. Random sections of convex bodies. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 190-199. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a10/