@article{ZNSL_2019_486_a0,
author = {Ya. I. Belopolskaya},
title = {Markov processes and magneto-hydrodynamic systems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--34},
year = {2019},
volume = {486},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a0/}
}
Ya. I. Belopolskaya. Markov processes and magneto-hydrodynamic systems. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 7-34. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a0/
[1] P. Olesen, “Integrable version of Burgers equation in magnetohydrodynamics”, Phys Rev E Stat Nonlin Soft Matter Phys., 68:1-2 (2003), 016307 | DOI | MR
[2] M. Kac, “Foundations of kinetic theory”, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability (1954), v. III, University of California Press, Berkeley–Los Angeles, 1956, 171–197 | MR
[3] M. Kac, Probability and Related Topics in the Physical Sciences, Interscience Publishers, New York, 1958 | MR
[4] H. P. McKean, “A class of Markov processes associated with non-linear parabolic equations”, Proceedings of the National Academy of Sciences, 56:6 (1966), 1907–1911 | DOI | MR | Zbl
[5] H. P. McKean, Jr., “Propagation of chaos for a class of nonlinear parabolic equations”, Lect. series in Diff. Eq., Catholic Univ., 7 (1967), 41–57 | MR
[6] V. I. Bogachev, N. V. Krylov, M. Rekner, S. V. Shaposhnikov, Uravneniya Fokkera–Planka–Kolmogorova, Institut kompyuternykh issledovanii, M.–Izhevsk, 2013 | MR
[7] R. Carmona, F. Delarue, Probabilistic Theory of Mean Field Games with Applications, Springer, 2018 | MR
[8] V. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge Univ. Press, 2010 | MR | Zbl
[9] A. Le Cavil, N. Oudjane, F. Russo, Forward Feynman-Kac type representation for semilinear nonconservative partial differential equations, version 3, , 2017 hal-01353757 | MR | Zbl
[10] A. Le Cavil, N. Oudjane, F. Russo, “Probabilistic representation of a class of non-conservative nonlinear partial differential equations”, ALEA Lat. Am. J. Probab. Math. Stat., 13:2 (2016), 1189–1233 | DOI | MR | Zbl
[11] V. N. Kolokoltsov, Nonlinear Markov processes and kinetic equations, Cambridge Tracts in Mathematics, 182, Cambridge Univ. Press, 2010 | MR | Zbl
[12] Ya. I. Belopolskaya, A. O. Stepanova, “Stokhasticheskaya interpretatsiya sistemy MGD-Byurgers”, Zap. nauchn. semin. POMI, 466, 2017, 7–29
[13] Ya. Belopolskaya, “Stochastic models for forward systems of nonlinear parabolic equations”, Stat. Pap. SI, 59:4 (2018), 1505–1519 | DOI | MR | Zbl
[14] Ya. Belopolskaya, “Stochastic interpretation of quasilinear parabolic systems with cross-diffusion”, Theory of Probability and its Applications, 61:2 (2017), 208–234 | DOI | MR | Zbl
[15] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On uniqueness problems related to elliptic equations for measures. Problems in mathematical analysis”, J. Math. Sci., 176:6 (2011), 759–773 | DOI | MR | Zbl
[16] A. Friedman, Stochastic differential equations and applications, v. 1, Probability and Mathematical Statistics, 28, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1975 | MR | Zbl
[17] M. A. Shubin, Lektsii ob uravneniyakh matematicheskoi fiziki, MTsNMO, 2003