Markov processes and magneto-hydrodynamic systems
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 7-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We derive a stochastic interpretation of a generalised solution of the Cauchy problem for a 3-dimensional magneto-hydrodynamic system, called MHD-Burgerssystem. We construct a mollified MHD-Burgers system and prove the the existence and uniqueness of a measure-valued solution of the Cauchy problem for this system. Finally, we justify a limiting procedure with respect to a mollification parameter and thus prove existence and uniqueness of the Cauchy problem solution for the original MHD-Burgers system. We construct as well a probabilistic representation of this solution.
@article{ZNSL_2019_486_a0,
     author = {Ya. I. Belopolskaya},
     title = {Markov processes and magneto-hydrodynamic systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--34},
     year = {2019},
     volume = {486},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a0/}
}
TY  - JOUR
AU  - Ya. I. Belopolskaya
TI  - Markov processes and magneto-hydrodynamic systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 7
EP  - 34
VL  - 486
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a0/
LA  - ru
ID  - ZNSL_2019_486_a0
ER  - 
%0 Journal Article
%A Ya. I. Belopolskaya
%T Markov processes and magneto-hydrodynamic systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 7-34
%V 486
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a0/
%G ru
%F ZNSL_2019_486_a0
Ya. I. Belopolskaya. Markov processes and magneto-hydrodynamic systems. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 7-34. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a0/

[1] P. Olesen, “Integrable version of Burgers equation in magnetohydrodynamics”, Phys Rev E Stat Nonlin Soft Matter Phys., 68:1-2 (2003), 016307 | DOI | MR

[2] M. Kac, “Foundations of kinetic theory”, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability (1954), v. III, University of California Press, Berkeley–Los Angeles, 1956, 171–197 | MR

[3] M. Kac, Probability and Related Topics in the Physical Sciences, Interscience Publishers, New York, 1958 | MR

[4] H. P. McKean, “A class of Markov processes associated with non-linear parabolic equations”, Proceedings of the National Academy of Sciences, 56:6 (1966), 1907–1911 | DOI | MR | Zbl

[5] H. P. McKean, Jr., “Propagation of chaos for a class of nonlinear parabolic equations”, Lect. series in Diff. Eq., Catholic Univ., 7 (1967), 41–57 | MR

[6] V. I. Bogachev, N. V. Krylov, M. Rekner, S. V. Shaposhnikov, Uravneniya Fokkera–Planka–Kolmogorova, Institut kompyuternykh issledovanii, M.–Izhevsk, 2013 | MR

[7] R. Carmona, F. Delarue, Probabilistic Theory of Mean Field Games with Applications, Springer, 2018 | MR

[8] V. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge Univ. Press, 2010 | MR | Zbl

[9] A. Le Cavil, N. Oudjane, F. Russo, Forward Feynman-Kac type representation for semilinear nonconservative partial differential equations, version 3, , 2017 hal-01353757 | MR | Zbl

[10] A. Le Cavil, N. Oudjane, F. Russo, “Probabilistic representation of a class of non-conservative nonlinear partial differential equations”, ALEA Lat. Am. J. Probab. Math. Stat., 13:2 (2016), 1189–1233 | DOI | MR | Zbl

[11] V. N. Kolokoltsov, Nonlinear Markov processes and kinetic equations, Cambridge Tracts in Mathematics, 182, Cambridge Univ. Press, 2010 | MR | Zbl

[12] Ya. I. Belopolskaya, A. O. Stepanova, “Stokhasticheskaya interpretatsiya sistemy MGD-Byurgers”, Zap. nauchn. semin. POMI, 466, 2017, 7–29

[13] Ya. Belopolskaya, “Stochastic models for forward systems of nonlinear parabolic equations”, Stat. Pap. SI, 59:4 (2018), 1505–1519 | DOI | MR | Zbl

[14] Ya. Belopolskaya, “Stochastic interpretation of quasilinear parabolic systems with cross-diffusion”, Theory of Probability and its Applications, 61:2 (2017), 208–234 | DOI | MR | Zbl

[15] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On uniqueness problems related to elliptic equations for measures. Problems in mathematical analysis”, J. Math. Sci., 176:6 (2011), 759–773 | DOI | MR | Zbl

[16] A. Friedman, Stochastic differential equations and applications, v. 1, Probability and Mathematical Statistics, 28, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1975 | MR | Zbl

[17] M. A. Shubin, Lektsii ob uravneniyakh matematicheskoi fiziki, MTsNMO, 2003