Markov processes and magneto-hydrodynamic systems
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 7-34

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a stochastic interpretation of a generalised solution of the Cauchy problem for a 3-dimensional magneto-hydrodynamic system, called MHD-Burgerssystem. We construct a mollified MHD-Burgers system and prove the the existence and uniqueness of a measure-valued solution of the Cauchy problem for this system. Finally, we justify a limiting procedure with respect to a mollification parameter and thus prove existence and uniqueness of the Cauchy problem solution for the original MHD-Burgers system. We construct as well a probabilistic representation of this solution.
@article{ZNSL_2019_486_a0,
     author = {Ya. I. Belopolskaya},
     title = {Markov processes and magneto-hydrodynamic systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--34},
     publisher = {mathdoc},
     volume = {486},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a0/}
}
TY  - JOUR
AU  - Ya. I. Belopolskaya
TI  - Markov processes and magneto-hydrodynamic systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 7
EP  - 34
VL  - 486
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a0/
LA  - ru
ID  - ZNSL_2019_486_a0
ER  - 
%0 Journal Article
%A Ya. I. Belopolskaya
%T Markov processes and magneto-hydrodynamic systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 7-34
%V 486
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a0/
%G ru
%F ZNSL_2019_486_a0
Ya. I. Belopolskaya. Markov processes and magneto-hydrodynamic systems. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 7-34. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a0/