On calculation of an automorphism group of a hyperelliptic curve
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 140-154

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm for finding an automorphism group of a hyperelliptic curve $y^2 = p (x) $ with $p \in \mathbb Q [x] $ over field of complex numbers is proposed. The algorithm is based on parametric representation of the curve at singular points by the help of power series. The implementation of the algorithm in the computer algebra system Sage is presented, several examples are given. Numerical experiments have shown that the algorithm does not lead to excessively complex calculations. Used format for description of the found groups allows to apply standard for Sage instruments for the investigation of small-order groups.
@article{ZNSL_2019_485_a7,
     author = {M. D. Malykh and L. A. Sevastianov},
     title = {On calculation of an automorphism group of a hyperelliptic curve},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--154},
     publisher = {mathdoc},
     volume = {485},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a7/}
}
TY  - JOUR
AU  - M. D. Malykh
AU  - L. A. Sevastianov
TI  - On calculation of an automorphism group of a hyperelliptic curve
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 140
EP  - 154
VL  - 485
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a7/
LA  - ru
ID  - ZNSL_2019_485_a7
ER  - 
%0 Journal Article
%A M. D. Malykh
%A L. A. Sevastianov
%T On calculation of an automorphism group of a hyperelliptic curve
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 140-154
%V 485
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a7/
%G ru
%F ZNSL_2019_485_a7
M. D. Malykh; L. A. Sevastianov. On calculation of an automorphism group of a hyperelliptic curve. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 140-154. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a7/