@article{ZNSL_2019_485_a7,
author = {M. D. Malykh and L. A. Sevastianov},
title = {On calculation of an automorphism group of a hyperelliptic curve},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {140--154},
year = {2019},
volume = {485},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a7/}
}
M. D. Malykh; L. A. Sevastianov. On calculation of an automorphism group of a hyperelliptic curve. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 140-154. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a7/
[1] R. Hartshorne, Algebraic Geometry, Springer, 1977 | MR | Zbl
[2] P. Painlevé, Leçons sur la théorie analytique des équations différentielles, professées à Stockholm (septembre, octobre, novembre 1895) sur l'invitation de S. M. le roi de Suède et de Norwège, {ØE}uvres de Painlevé, 1, CNRS, Paris, 1971
[3] A. Broughton, T. Shaska, A. Wootton, “On automorphisms of algebraic curves”, Contemp. Math., 724, Amer. Math. Soc., Providence, RI, 2019, 175–212 | DOI | MR | Zbl
[4] Eslam E. Badr, Mohammed A. Saleem, Cyclic Automorphisms groups of genus 10 non-hyperelliptic curves, 2013, arXiv: 1307.1254
[5] Tanush Shaska, “Determining the automorphism group of a hyperelliptic curve”, Proc. of the international symposium on Symbolic and algebraic computation, 2003, 248–254 | MR | Zbl
[6] Tanush Shaska, “Some spectral families of hyperelliptic curves”, J. Algebra Its Appl., 03:1 (2004), 75–89 | DOI | MR
[7] D. Sevilla, T. Shaska, “Hyperelliptic curves with reduced automorphism group $A_5$”, Applicable Algebra in Engineering, Communication and Computing, 18:3 (2007) | DOI | MR
[8] Overview of Algcurves package, https://www.maplesoft.com/support/help/Maple/view.aspx?path=algcurves
[9] W. Stein et al., “Affine curves”, Sage Reference Manual, 2019 http://doc.sagemath.org/html/en/reference/curves/sage/schemes/curves/affine_curve.html
[10] S. A. Abramov, M. Petkovšek, “On polynomial solutions of linear partial differential and (q-)difference equations”, Computer Algebra in Scientific Computing, CASC 2012, Lecture Notes in Computer Science, 7442, 2012, 1–11 | DOI | MR | Zbl
[11] S. V. Paramonov, “Undecidability of existence of certain solutions of partial differential and difference equations”, Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, 8660, 2014, 350–356 | DOI | Zbl
[12] E. A. Ayryan, M. D. Malykh, L. A. Sevastianov, Ying Yu, “On explicit difference schemes for autonomous systems of differential equations on manifolds”, Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, 11520, 2019 | MR
[13] A. Hurwitz, “Über diejenigen algebraischen Gebilde, welche eindeutige Transformationen in sich zulassen”, Math. Ann., 32 (1887) | MR
[14] K. Weierstrass, Mathematische Werke, v. 4, Mayer, Berlin, 1902 | Zbl
[15] D. Joyner et al., “Permutation groups”, Sage Reference Manual http://doc.sagemath.org/html/en/reference/groups/sage/groups/perm_gps/permgroup.html
[16] H.G. Zeuthen, Lehrbuch der abzählenden Methoden der Geometrie, Teubner, Leipzig–Berlin, 1914 | Zbl
[17] F. Severi, Lezioni di geometria algebrica, Angelo Graghi, Padova, 1908 | MR
[18] R. Nevanlinna, Uniformisierung, Springer, Berlin, 1953 | MR | Zbl
[19] Hyperelliptic curves for Sage, https://malykhmd.neocities.org
[20] Group Names, https://people.maths.bris.ac.uk/m̃atyd/GroupNames