Randomized Schützenberger's jeu de taquin and approximate calculation of co-transition probabilities of a central Markov process on the 3D Young graph
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 90-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

There exists a well-known hook-length formula for calculating the dimensions of 2D Young diagrams. Unfortunately, the analogous formula for 3D case is unknown. We introduce an approach for calculating the estimations of dimensions of three-dimensional Young diagrams also known as plane partitions. The most difficult part of this task is the calculation of co-transition probabilities for a central Markov process. We propose an algorithm for approximate calculation of these probabilities. It generates numerous random paths to a given diagram. In case the generated paths are uniformly distributed, the proportion of paths passing through a certain branch gives us an approximate value of the co-transition probability. As our numerical experiments show, the random generator based on the randomized variant of the Schützenberger transformation allows to obtain accurate values of co-transition probabilities. Also a method to construct 3D Young diagrams with large dimensions is proposed.
@article{ZNSL_2019_485_a5,
     author = {V. Duzhin and N. Vassiliev},
     title = {Randomized {Sch\"utzenberger's} jeu de taquin and approximate calculation of co-transition probabilities of a central {Markov} process on the {3D} {Young} graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--106},
     year = {2019},
     volume = {485},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a5/}
}
TY  - JOUR
AU  - V. Duzhin
AU  - N. Vassiliev
TI  - Randomized Schützenberger's jeu de taquin and approximate calculation of co-transition probabilities of a central Markov process on the 3D Young graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 90
EP  - 106
VL  - 485
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a5/
LA  - en
ID  - ZNSL_2019_485_a5
ER  - 
%0 Journal Article
%A V. Duzhin
%A N. Vassiliev
%T Randomized Schützenberger's jeu de taquin and approximate calculation of co-transition probabilities of a central Markov process on the 3D Young graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 90-106
%V 485
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a5/
%G en
%F ZNSL_2019_485_a5
V. Duzhin; N. Vassiliev. Randomized Schützenberger's jeu de taquin and approximate calculation of co-transition probabilities of a central Markov process on the 3D Young graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 90-106. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a5/

[1] M. P. Schützenberger, “Quelques remarques sur une construction de Schensted”, Math. Scandinavica, 12 (1963), 117–128 | DOI | MR | Zbl

[2] S. V. Fomin, “Knuth equivalence, jeu de taquin, and the Littlewood–Richardson rule”, Appendix 1 to Chapter 7: R. P. Stanley, Enumerative Combinatorics, v. 2, Cambridge University Press

[3] D. Romik, P. Śniady, “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Annals of Probability, 43:2 (2015), 682–737 | DOI | MR | Zbl

[4] A. Vershik, Combinatorial encoding of continuous dynamics, and transfer of the space of paths of the graded graphs, 2019, arXiv: 1904.10938 | MR

[5] A. Vershik, D. Pavlov, “Numerical experiments in problems of asymptotic representation theory”, Zap. Nauchn. Semin., 373, 2009, 77–93 | MR

[6] N. N. Vasilyev, V. S. Duzhin, “Building Irreducible Representations of a Symmetric Group S(n) with Large and Maximum Dimensions”, Information and Control Systems, 2015, no. 3, 17–22 | DOI

[7] N. N. Vasilyev, V. S. Duzhin, “A study of the growth of maximal and typical normalized dimensions of strict Young diagrams”, J. Math. Sci., 216 (2016), 53–64 | DOI | MR

[8] V. S. Duzhin, N. N. Vasilyev, “Asymptotic behavior of normalized dimensions of standard and strict Young diagrams – growth and oscillations”, J. Knot Theory Ramifications, 26 (2016) | MR

[9] N. N. Vasiliev, V. S. Duzhin, “Numerical investigation of the asymptotics of the probabilities of paths in a Markov process on the 3D Young graph close to a central one”, Zap. Nauchn. Semin. POMI, 448, 2016, 69–79 | MR

[10] V. Duzhin, N. Vasilyev, “Modeling of an Asymptotically Central Markov Process on 3D Young Graph”, Mathematics in Computer Science, 11:3–4, 315–328 | MR | Zbl

[11] N. N. Vasiliev, A. B. Terentjev, “Modelling of almost central measures generated by Markov processes in the three-dimensional case”, J. Math. Sci., 209:6 (2015), 851–859 | DOI | MR | Zbl

[12] S. V. Kerov, “Transition Probabilities for Continual Young Diagrams and the Markov Moment Problem”, Funktsional. Anal. Prilozhen., 27:2 (1993), 32–49 | MR | Zbl

[13] A. M. Vershik, S. V. Kerov, “Asymptotic behavior of the maximum and generic dimensions of irreducible representations of the symmetric group”, Funkt. Anal. Prilozhen., 19:1 (1985), 25–36 | MR | Zbl