@article{ZNSL_2019_485_a5,
author = {V. Duzhin and N. Vassiliev},
title = {Randomized {Sch\"utzenberger's} jeu de taquin and approximate calculation of co-transition probabilities of a central {Markov} process on the {3D} {Young} graph},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {90--106},
year = {2019},
volume = {485},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a5/}
}
TY - JOUR AU - V. Duzhin AU - N. Vassiliev TI - Randomized Schützenberger's jeu de taquin and approximate calculation of co-transition probabilities of a central Markov process on the 3D Young graph JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 90 EP - 106 VL - 485 UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a5/ LA - en ID - ZNSL_2019_485_a5 ER -
%0 Journal Article %A V. Duzhin %A N. Vassiliev %T Randomized Schützenberger's jeu de taquin and approximate calculation of co-transition probabilities of a central Markov process on the 3D Young graph %J Zapiski Nauchnykh Seminarov POMI %D 2019 %P 90-106 %V 485 %U http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a5/ %G en %F ZNSL_2019_485_a5
V. Duzhin; N. Vassiliev. Randomized Schützenberger's jeu de taquin and approximate calculation of co-transition probabilities of a central Markov process on the 3D Young graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 90-106. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a5/
[1] M. P. Schützenberger, “Quelques remarques sur une construction de Schensted”, Math. Scandinavica, 12 (1963), 117–128 | DOI | MR | Zbl
[2] S. V. Fomin, “Knuth equivalence, jeu de taquin, and the Littlewood–Richardson rule”, Appendix 1 to Chapter 7: R. P. Stanley, Enumerative Combinatorics, v. 2, Cambridge University Press
[3] D. Romik, P. Śniady, “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Annals of Probability, 43:2 (2015), 682–737 | DOI | MR | Zbl
[4] A. Vershik, Combinatorial encoding of continuous dynamics, and transfer of the space of paths of the graded graphs, 2019, arXiv: 1904.10938 | MR
[5] A. Vershik, D. Pavlov, “Numerical experiments in problems of asymptotic representation theory”, Zap. Nauchn. Semin., 373, 2009, 77–93 | MR
[6] N. N. Vasilyev, V. S. Duzhin, “Building Irreducible Representations of a Symmetric Group S(n) with Large and Maximum Dimensions”, Information and Control Systems, 2015, no. 3, 17–22 | DOI
[7] N. N. Vasilyev, V. S. Duzhin, “A study of the growth of maximal and typical normalized dimensions of strict Young diagrams”, J. Math. Sci., 216 (2016), 53–64 | DOI | MR
[8] V. S. Duzhin, N. N. Vasilyev, “Asymptotic behavior of normalized dimensions of standard and strict Young diagrams – growth and oscillations”, J. Knot Theory Ramifications, 26 (2016) | MR
[9] N. N. Vasiliev, V. S. Duzhin, “Numerical investigation of the asymptotics of the probabilities of paths in a Markov process on the 3D Young graph close to a central one”, Zap. Nauchn. Semin. POMI, 448, 2016, 69–79 | MR
[10] V. Duzhin, N. Vasilyev, “Modeling of an Asymptotically Central Markov Process on 3D Young Graph”, Mathematics in Computer Science, 11:3–4, 315–328 | MR | Zbl
[11] N. N. Vasiliev, A. B. Terentjev, “Modelling of almost central measures generated by Markov processes in the three-dimensional case”, J. Math. Sci., 209:6 (2015), 851–859 | DOI | MR | Zbl
[12] S. V. Kerov, “Transition Probabilities for Continual Young Diagrams and the Markov Moment Problem”, Funktsional. Anal. Prilozhen., 27:2 (1993), 32–49 | MR | Zbl
[13] A. M. Vershik, S. V. Kerov, “Asymptotic behavior of the maximum and generic dimensions of irreducible representations of the symmetric group”, Funkt. Anal. Prilozhen., 19:1 (1985), 25–36 | MR | Zbl