@article{ZNSL_2019_485_a4,
author = {I. Dolgakov and D. Pavlov},
title = {Landau: language for dynamical systems with automatic differentiation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {78--89},
year = {2019},
volume = {485},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a4/}
}
I. Dolgakov; D. Pavlov. Landau: language for dynamical systems with automatic differentiation. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 78-89. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a4/
[1] A. Abad, R. Barrio, M. Marco-Buzunariz, M. Rodríguez, “Automatic implementation of the numerical Taylor series method”, Appl. Math. Comput., 268 (2015), 227–245 | Zbl
[2] “Automatic implementation of the numerical Taylor series method: A Mathematica and Sage approach”, Appl. Math. Comput., 268 (2015), 227–245 | Zbl
[3] Ch. Bischof, A. Carle, G. Corliss, A. Griewank, P. Hovland, “ADIFOR–generating derivative codes from Fortran programs”, Scientific Programming, 1:1 (1992), 11–29 | DOI
[4] Ch. Bischof, L. Roh, A. J. Mauer-Oats, “ADIC: an extensible automatic differentiation tool for ANSI-C”, Software: Practice and Experience, 27:12 (1997), 1427–1456 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[5] F. C. Botelho, R. Pagh, N. Ziviani, “Simple and space-efficient minimal perfect hash functions”, Workshop on Algorithms and Data Structures, 2007, 139–150 | Zbl
[6] T. F. Coleman, A. Verma, “ADMAT: An automatic differentiation toolbox for MATLAB”, Proceedings of the SIAM Workshop on Object Oriented Methods for Inter-Operable Scientific and Engineering Computing, v. 2, SIAM, Philadelphia, PA, 1998 | Zbl
[7] M. Felleisen, R. B. Findler, M. Flatt, Sh. Krishnamurthi, E. Barzilay, J. McCarthy, S. Tobin-Hochstadt, “A Programmable Programming Language”, Commun. ACM, 61:3 (2018), 62–71 | DOI
[8] A. Griewank, D. Juedes, J. Utke, “Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++”, ACM Transactions on Mathematical Software (TOMS), 22:2 (1996), 131–167 | DOI | Zbl
[9] À. Jorba, M. Zou, “A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods”, Experimental Mathematics, 14:1 (2005), 99–117 | DOI | MR | Zbl
[10] J. M. Siskind, B. A. Pearlmutter, “Nesting forward-mode AD in a functional framework”, Higher-Order and Symbolic Computation, 21:4 (2008), 361–376 | DOI | Zbl
[11] J. M. Siskind, B, A. Pearlmutter, “Efficient Implementation of a Higher-Order Language with Built-In AD”, AD2016 – 7th International Conference on Algorithmic Differentiation (Oxford, UK, 2016)
[12] M. Tadjouddine, Sjh. A. Forth, J. D. Pryce, “AD tools and prospects for optimal AD in CFD flux Jacobian calculations”, Automatic differentiation of algorithms, 2002, 255–261 | DOI