A combinatorial formula for monomials in Kontsevich's $\psi$-classes
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 72-77
Voir la notice de l'article provenant de la source Math-Net.Ru
Diagonal complexes provide a simplicial model for the Kontsevich's tautological bundles over $\mathcal{M}_{g,n}$. Local combinatorial formula for the first Chern class yields a combinatorial formula for the $\psi$-classes (that is, first Chern classes of the tautological bundles). In the present paper we derive a formula for arbitrary monomials in $\psi$-classes.
@article{ZNSL_2019_485_a3,
author = {J. Gordon and G. Panina},
title = {A combinatorial formula for monomials in {Kontsevich's} $\psi$-classes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--77},
publisher = {mathdoc},
volume = {485},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a3/}
}
J. Gordon; G. Panina. A combinatorial formula for monomials in Kontsevich's $\psi$-classes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 72-77. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a3/