A combinatorial formula for monomials in Kontsevich's $\psi$-classes
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 72-77
Cet article a éte moissonné depuis la source Math-Net.Ru
Diagonal complexes provide a simplicial model for the Kontsevich's tautological bundles over $\mathcal{M}_{g,n}$. Local combinatorial formula for the first Chern class yields a combinatorial formula for the $\psi$-classes (that is, first Chern classes of the tautological bundles). In the present paper we derive a formula for arbitrary monomials in $\psi$-classes.
@article{ZNSL_2019_485_a3,
author = {J. Gordon and G. Panina},
title = {A combinatorial formula for monomials in {Kontsevich's} $\psi$-classes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--77},
year = {2019},
volume = {485},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a3/}
}
J. Gordon; G. Panina. A combinatorial formula for monomials in Kontsevich's $\psi$-classes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 72-77. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a3/
[1] J. Gordon, G. Panina, “Diagonal complexes”, Izv. RAN. Ser. Mat., 82:5 (2018), 3–22 | DOI | MR | Zbl
[2] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[3] J. L. Harer, “The virtual cohomological dimension of the mapping class group of an orientable surface”, Inventiones mathematicae, 84:1 (1986), 157–176 | DOI | MR | Zbl
[4] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl
[5] N. Mnev, G. Sharygin, “On local combinatorial formulas for Chern classes of triangulated circle bundle”, Zap. Nauchn. Semin. PDMI, 448, 2016, 201–235 | MR