A combinatorial formula for monomials in Kontsevich's $\psi$-classes
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 72-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Diagonal complexes provide a simplicial model for the Kontsevich's tautological bundles over $\mathcal{M}_{g,n}$. Local combinatorial formula for the first Chern class yields a combinatorial formula for the $\psi$-classes (that is, first Chern classes of the tautological bundles). In the present paper we derive a formula for arbitrary monomials in $\psi$-classes.
@article{ZNSL_2019_485_a3,
     author = {J. Gordon and G. Panina},
     title = {A combinatorial formula for monomials in {Kontsevich's} $\psi$-classes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {72--77},
     year = {2019},
     volume = {485},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a3/}
}
TY  - JOUR
AU  - J. Gordon
AU  - G. Panina
TI  - A combinatorial formula for monomials in Kontsevich's $\psi$-classes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 72
EP  - 77
VL  - 485
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a3/
LA  - en
ID  - ZNSL_2019_485_a3
ER  - 
%0 Journal Article
%A J. Gordon
%A G. Panina
%T A combinatorial formula for monomials in Kontsevich's $\psi$-classes
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 72-77
%V 485
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a3/
%G en
%F ZNSL_2019_485_a3
J. Gordon; G. Panina. A combinatorial formula for monomials in Kontsevich's $\psi$-classes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 72-77. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a3/

[1] J. Gordon, G. Panina, “Diagonal complexes”, Izv. RAN. Ser. Mat., 82:5 (2018), 3–22 | DOI | MR | Zbl

[2] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[3] J. L. Harer, “The virtual cohomological dimension of the mapping class group of an orientable surface”, Inventiones mathematicae, 84:1 (1986), 157–176 | DOI | MR | Zbl

[4] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl

[5] N. Mnev, G. Sharygin, “On local combinatorial formulas for Chern classes of triangulated circle bundle”, Zap. Nauchn. Semin. PDMI, 448, 2016, 201–235 | MR