Commutators of relative and unrelative elementary groups, revisited
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 58-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $R$ be any associative ring with $1$, $n\ge 3$, and let $A,B$ be two-sided ideals of $R$. In the present paper we show that the mixed commutator subgroup $[E(n,R,A),E(n,R,B)]$ is generated as a group by the elements of the two following forms: 1) $z_{ij}(ab,c)$ and $z_{ij}(ba,c)$, 2) $[t_{ij}(a),t_{ji}(b)]$, where $1\le i\neq j\le n$, $a\in A$, $b\in B$, $c\in R$. Moreover, for the second type of generators, it suffices to fix one pair of indices $(i,j)$. This result is both stronger and more general than the previous results by Roozbeh Hazrat and the authors. In particular, it implies that for all associative rings one has the equality $\big[E(n,R,A),E(n,R,B)\big]=\big[E(n,A),E(n,B)\big]$ and many further corollaries can be derived for rings subject to commutativity conditions.
@article{ZNSL_2019_485_a2,
     author = {N. Vavilov and Z. Zhang},
     title = {Commutators of relative and unrelative elementary groups, revisited},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {58--71},
     year = {2019},
     volume = {485},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a2/}
}
TY  - JOUR
AU  - N. Vavilov
AU  - Z. Zhang
TI  - Commutators of relative and unrelative elementary groups, revisited
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 58
EP  - 71
VL  - 485
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a2/
LA  - en
ID  - ZNSL_2019_485_a2
ER  - 
%0 Journal Article
%A N. Vavilov
%A Z. Zhang
%T Commutators of relative and unrelative elementary groups, revisited
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 58-71
%V 485
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a2/
%G en
%F ZNSL_2019_485_a2
N. Vavilov; Z. Zhang. Commutators of relative and unrelative elementary groups, revisited. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 58-71. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a2/

[1] A. Bak, “Non-abelian $\mathrm{K}$-theory: The nilpotent class of $\mathrm{K}_1$ and general stability”, $K$–Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[2] H. Bass, “$\mathrm{K}$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 1964, no. 22, 5–60 | DOI | MR

[3] Z. I. Borewicz, N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring”, Proc. Steklov Inst. Math., 3 (1985), 27–46 | MR

[4] D. Carter, G. E. Keller, “Bounded elementary generation of $\mathrm{SL}_n({ \mathcal O})$”, Amer. J. Math., 105 (1983), 673–687 | DOI | MR | Zbl

[5] V. N. Gerasimov, “Group of units of a free product of rings”, Math. U.S.S.R. Sb., 134:1 (1989), 42–65 | MR

[6] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm{K}$-theory, Springer, Berlin et al., 1989 | MR

[7] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators”, J. Math. Sci., 179:6 (2011), 662–678 | DOI | MR | Zbl

[8] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutator width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl

[9] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators, further applications”, J. Math. Sci., 200:6 (2014), 742–768 | DOI | MR | Zbl

[10] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm{K}$-theory of rings (with an appendix by Max Karoubi)”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl

[11] R. Hazrat, N. Vavilov, Zuhong Zhang, “Generation of relative commutator subgroups in Chevalley groups”, Proc. Edinburgh Math. Soc., 59 (2016), 393–410 | DOI | MR | Zbl

[12] R. Hazrat, N. Vavilov, Z. Zhang, “Multiple commutator formulas for unitary groups”, Israel J. Math., 219 (2017), 287–330 | DOI | MR | Zbl

[13] R. Hazrat, N. Vavilov, Zuhong Zhang, “The commutators of classical groups”, J. Math. Sci., 222:4 (2017), 466–515 | DOI | MR | Zbl

[14] R. Hazrat, Zuhong Zhang, “Generalized commutator formula”, Commun. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl

[15] R. Hazrat, Zuhong Zhang, “Multiple commutator formula”, Israel J. Math., 195 (2013), 481–505 | DOI | MR | Zbl

[16] W. van der Kallen, “A group structure on certain orbit sets of unimodular rows”, J. Algebra, 82 (1983), 363–397 | DOI | MR | Zbl

[17] A. Lavrenov, S. Sinchuk, A Horrocks-type theorem for even orthogonal $\mathrm{K}_2$, 1909, 23 pp., arXiv: 1909.02637v1 [math.GR]

[18] A. W. Mason, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. reine angew. Math., 322 (1981), 118–135 | MR | Zbl

[19] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl

[20] B. Nica, “A true relative of Suslin's normality theorem”, Enseign. Math., 61:1–2 (2015), 151–159 | DOI | MR | Zbl

[21] A. Stepanov, “Elementary calculus in Chevalley groups over rings”, J. Prime Res. Math., 9 (2013), 79–95 | MR | Zbl

[22] A. V. Stepanov, “Non-abelian $\mathrm{K}$-theory for Chevalley groups over rings”, J. Math. Sci., 209:4 (2015), 645–656 | DOI | MR | Zbl

[23] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl

[24] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm{K}$-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl

[25] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 235–253 | DOI | MR

[26] O. I. Tavgen, “Bounded generation of Chevalley groups over rings of $S$-integer algebraic numbers”, Izv. Acad. Sci. USSR, 54:1 (1990), 97–122 | MR | Zbl

[27] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Algebraic $\mathrm{K}$-Theory (Evanston, 1980), Lecture Notes in Math., 854, Springer, Berlin et al., 1981, 454–465 | MR

[28] N. Vavilov, “Unrelativised standard commutator formula”, Zap. Nauch. Semin. POMI, 470, 2018, 38–49 | MR

[29] N. Vavilov, “Commutators of congruence subgroups in the arithmetic case”, Zap. Nauch. Semin. POMI, 479, 2019, 5–22 | MR

[30] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg State Univ. Ser. 1, 41:1 (2008), 5–8 | MR | Zbl

[31] N. A. Vavilov, A. V. Stepanov, “Standard commutator formulae, revisited”, Vestnik St. Petersburg State Univ. Ser. 1, 43:1 (2010), 12–17 | MR | Zbl

[32] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings I. Generalities”, J. Math. Sci., 188:5 (2013), 490–550 | DOI | MR | Zbl

[33] N. Vavilov, Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups. II”, Proc. Edinburgh Math. Soc., 2019, 1–16 | MR

[34] N. Vavilov, Z. Zhang, Unrelativised commutator formulas for unitary groups, 2019, 21 pp. | MR

[35] N. Vavilov, Z. Zhang, “Commutators of relative and unrelative elementary subgroups”, Chevalley groups, 2019, 1–23 | MR

[36] Hong You, “On subgroups of Chevalley groups which are generated by commutators”, J. Northeast Normal Univ., 1992, no. 2, 9–13 | MR