@article{ZNSL_2019_485_a2,
author = {N. Vavilov and Z. Zhang},
title = {Commutators of relative and unrelative elementary groups, revisited},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {58--71},
year = {2019},
volume = {485},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a2/}
}
N. Vavilov; Z. Zhang. Commutators of relative and unrelative elementary groups, revisited. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 58-71. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a2/
[1] A. Bak, “Non-abelian $\mathrm{K}$-theory: The nilpotent class of $\mathrm{K}_1$ and general stability”, $K$–Theory, 4 (1991), 363–397 | DOI | MR | Zbl
[2] H. Bass, “$\mathrm{K}$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 1964, no. 22, 5–60 | DOI | MR
[3] Z. I. Borewicz, N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring”, Proc. Steklov Inst. Math., 3 (1985), 27–46 | MR
[4] D. Carter, G. E. Keller, “Bounded elementary generation of $\mathrm{SL}_n({ \mathcal O})$”, Amer. J. Math., 105 (1983), 673–687 | DOI | MR | Zbl
[5] V. N. Gerasimov, “Group of units of a free product of rings”, Math. U.S.S.R. Sb., 134:1 (1989), 42–65 | MR
[6] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm{K}$-theory, Springer, Berlin et al., 1989 | MR
[7] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators”, J. Math. Sci., 179:6 (2011), 662–678 | DOI | MR | Zbl
[8] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutator width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl
[9] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators, further applications”, J. Math. Sci., 200:6 (2014), 742–768 | DOI | MR | Zbl
[10] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm{K}$-theory of rings (with an appendix by Max Karoubi)”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl
[11] R. Hazrat, N. Vavilov, Zuhong Zhang, “Generation of relative commutator subgroups in Chevalley groups”, Proc. Edinburgh Math. Soc., 59 (2016), 393–410 | DOI | MR | Zbl
[12] R. Hazrat, N. Vavilov, Z. Zhang, “Multiple commutator formulas for unitary groups”, Israel J. Math., 219 (2017), 287–330 | DOI | MR | Zbl
[13] R. Hazrat, N. Vavilov, Zuhong Zhang, “The commutators of classical groups”, J. Math. Sci., 222:4 (2017), 466–515 | DOI | MR | Zbl
[14] R. Hazrat, Zuhong Zhang, “Generalized commutator formula”, Commun. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl
[15] R. Hazrat, Zuhong Zhang, “Multiple commutator formula”, Israel J. Math., 195 (2013), 481–505 | DOI | MR | Zbl
[16] W. van der Kallen, “A group structure on certain orbit sets of unimodular rows”, J. Algebra, 82 (1983), 363–397 | DOI | MR | Zbl
[17] A. Lavrenov, S. Sinchuk, A Horrocks-type theorem for even orthogonal $\mathrm{K}_2$, 1909, 23 pp., arXiv: 1909.02637v1 [math.GR]
[18] A. W. Mason, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. reine angew. Math., 322 (1981), 118–135 | MR | Zbl
[19] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl
[20] B. Nica, “A true relative of Suslin's normality theorem”, Enseign. Math., 61:1–2 (2015), 151–159 | DOI | MR | Zbl
[21] A. Stepanov, “Elementary calculus in Chevalley groups over rings”, J. Prime Res. Math., 9 (2013), 79–95 | MR | Zbl
[22] A. V. Stepanov, “Non-abelian $\mathrm{K}$-theory for Chevalley groups over rings”, J. Math. Sci., 209:4 (2015), 645–656 | DOI | MR | Zbl
[23] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl
[24] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm{K}$-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl
[25] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 235–253 | DOI | MR
[26] O. I. Tavgen, “Bounded generation of Chevalley groups over rings of $S$-integer algebraic numbers”, Izv. Acad. Sci. USSR, 54:1 (1990), 97–122 | MR | Zbl
[27] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Algebraic $\mathrm{K}$-Theory (Evanston, 1980), Lecture Notes in Math., 854, Springer, Berlin et al., 1981, 454–465 | MR
[28] N. Vavilov, “Unrelativised standard commutator formula”, Zap. Nauch. Semin. POMI, 470, 2018, 38–49 | MR
[29] N. Vavilov, “Commutators of congruence subgroups in the arithmetic case”, Zap. Nauch. Semin. POMI, 479, 2019, 5–22 | MR
[30] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg State Univ. Ser. 1, 41:1 (2008), 5–8 | MR | Zbl
[31] N. A. Vavilov, A. V. Stepanov, “Standard commutator formulae, revisited”, Vestnik St. Petersburg State Univ. Ser. 1, 43:1 (2010), 12–17 | MR | Zbl
[32] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings I. Generalities”, J. Math. Sci., 188:5 (2013), 490–550 | DOI | MR | Zbl
[33] N. Vavilov, Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups. II”, Proc. Edinburgh Math. Soc., 2019, 1–16 | MR
[34] N. Vavilov, Z. Zhang, Unrelativised commutator formulas for unitary groups, 2019, 21 pp. | MR
[35] N. Vavilov, Z. Zhang, “Commutators of relative and unrelative elementary subgroups”, Chevalley groups, 2019, 1–23 | MR
[36] Hong You, “On subgroups of Chevalley groups which are generated by commutators”, J. Northeast Normal Univ., 1992, no. 2, 9–13 | MR