Commutators of relative and unrelative elementary groups, revisited
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 58-71

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be any associative ring with $1$, $n\ge 3$, and let $A,B$ be two-sided ideals of $R$. In the present paper we show that the mixed commutator subgroup $[E(n,R,A),E(n,R,B)]$ is generated as a group by the elements of the two following forms: 1) $z_{ij}(ab,c)$ and $z_{ij}(ba,c)$, 2) $[t_{ij}(a),t_{ji}(b)]$, where $1\le i\neq j\le n$, $a\in A$, $b\in B$, $c\in R$. Moreover, for the second type of generators, it suffices to fix one pair of indices $(i,j)$. This result is both stronger and more general than the previous results by Roozbeh Hazrat and the authors. In particular, it implies that for all associative rings one has the equality $\big[E(n,R,A),E(n,R,B)\big]=\big[E(n,A),E(n,B)\big]$ and many further corollaries can be derived for rings subject to commutativity conditions.
@article{ZNSL_2019_485_a2,
     author = {N. Vavilov and Z. Zhang},
     title = {Commutators of relative and unrelative elementary groups, revisited},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {58--71},
     publisher = {mathdoc},
     volume = {485},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a2/}
}
TY  - JOUR
AU  - N. Vavilov
AU  - Z. Zhang
TI  - Commutators of relative and unrelative elementary groups, revisited
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 58
EP  - 71
VL  - 485
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a2/
LA  - en
ID  - ZNSL_2019_485_a2
ER  - 
%0 Journal Article
%A N. Vavilov
%A Z. Zhang
%T Commutators of relative and unrelative elementary groups, revisited
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 58-71
%V 485
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a2/
%G en
%F ZNSL_2019_485_a2
N. Vavilov; Z. Zhang. Commutators of relative and unrelative elementary groups, revisited. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 58-71. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a2/