Systems of first order ODE generating confluent Heun equations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 187-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Relation between linear second order equations being confluent Heun equations: biconfluent and triconfluent – and first order linear systems of equations which generate Painlevë equations is studied. The generation process is interpreted in physical terms as antiquantization.Technically the study includes manipulations with polynomials. The complexity of computations sometimes demands the use of Algebraic Computing Systems.
@article{ZNSL_2019_485_a10,
     author = {A. A. Salatich and S. Yu. Slavyanov and O. L. Stesik},
     title = {Systems of first order {ODE} generating confluent {Heun} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--194},
     year = {2019},
     volume = {485},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a10/}
}
TY  - JOUR
AU  - A. A. Salatich
AU  - S. Yu. Slavyanov
AU  - O. L. Stesik
TI  - Systems of first order ODE generating confluent Heun equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 187
EP  - 194
VL  - 485
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a10/
LA  - ru
ID  - ZNSL_2019_485_a10
ER  - 
%0 Journal Article
%A A. A. Salatich
%A S. Yu. Slavyanov
%A O. L. Stesik
%T Systems of first order ODE generating confluent Heun equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 187-194
%V 485
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a10/
%G ru
%F ZNSL_2019_485_a10
A. A. Salatich; S. Yu. Slavyanov; O. L. Stesik. Systems of first order ODE generating confluent Heun equations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 187-194. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a10/

[1] S. Slavyanov, “Painleve equations as classical analogues of Heun equations”, J. Phys. A: Math. Gen., 29 (1996), 7329–7335 | DOI | MR | Zbl

[2] S. Yu. Slavyanov , V. Lai, Spetsialnye funktsii, Nevskii dialekt, SPb, 2002

[3] S. Yu. Slavyanov, F. R. Vukailovich, “Izomonodromnye deformatsii i “antikvantovanie” dlya prosteishikh ODU”, TMF, 150 (2007), 143–151 | DOI | Zbl

[4] S. Yu. Slavyanov, “Antikvantovanie i sootvetstvuyuschie simmetrii”, TMF, 185 (2007), 186–191 | DOI

[5] S. Yu. Slavyanov, O. L. Stesik, “Antikvantovanie deformirovannykh uravnenii klassa Goina”, TMF, 186 (2016), 118–125 | DOI | Zbl

[6] M. Babich, S. Slavyanov, “Antiquantization, isomonodromy, and integrability”, J. Math. Phys., 59, 091201, 10 pp. | MR

[7] A. A. Bolibrukh, Obratnye problemy monodromii v v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009

[8] S. Yu. Slavyanov, A. A. Salatich, “Konflyuentnoe uravnenie Goina i konflyuentnoe gipergeometricheskoe uravnenie”, Zap. nauchn. semin. POMI, 2017

[9] A. A. Salatich, S. Yu. Slavyanov, “Antiquantization of the Double Confluent Heun Equation. The Teukolsky Equation”, Nelin. Dinam., 15 (2019), 79–85 | DOI | MR | Zbl

[10] S. Yu. Slavyanov, O. L. Stesik, “Antiquantization of deformed Heun class equations as a tool for symbolic generation of Painleve equations”, ACM Communications in Computer Algebra, 2017 | MR

[11] S. Yu. Slavyanov, O. L. Stesik, “Simvolnaya generatsiya uravnenii Penleve”, Zap. nauchn. semin. POMI, 2016

[12] S. Slavyanov, O. Stesik, “Antiquantization as a specific way from the Statistical physics to the Regular Physics”, Physica A: Statistical Mechanics and its Applications, 521 (2019), 512–518 | DOI | MR

[13] S. Chen, M. Kauers, Z. Li, Y. Zhang, “Apparent singularities of D-finite systems”, J. Symb. Comput., 2019 | MR