Systems of first order ODE generating confluent Heun equations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 187-194
Voir la notice de l'article provenant de la source Math-Net.Ru
Relation between linear second order equations being confluent Heun equations: biconfluent and triconfluent – and first order linear systems of equations which generate Painlevë equations is studied. The generation process is interpreted in physical terms as antiquantization.Technically the study includes manipulations with polynomials. The complexity of computations sometimes demands the use of Algebraic Computing Systems.
@article{ZNSL_2019_485_a10,
author = {A. A. Salatich and S. Yu. Slavyanov and O. L. Stesik},
title = {Systems of first order {ODE} generating confluent {Heun} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {187--194},
publisher = {mathdoc},
volume = {485},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a10/}
}
TY - JOUR AU - A. A. Salatich AU - S. Yu. Slavyanov AU - O. L. Stesik TI - Systems of first order ODE generating confluent Heun equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 187 EP - 194 VL - 485 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a10/ LA - ru ID - ZNSL_2019_485_a10 ER -
A. A. Salatich; S. Yu. Slavyanov; O. L. Stesik. Systems of first order ODE generating confluent Heun equations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 187-194. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a10/