Voir la notice du chapitre de livre
@article{ZNSL_2019_485_a0,
author = {V. Abgaryan and A. Khvedelidze and A. Torosyan},
title = {The global indicator of classicality of an arbitrary $N$-level quantum system},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--23},
year = {2019},
volume = {485},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a0/}
}
TY - JOUR AU - V. Abgaryan AU - A. Khvedelidze AU - A. Torosyan TI - The global indicator of classicality of an arbitrary $N$-level quantum system JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 5 EP - 23 VL - 485 UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a0/ LA - en ID - ZNSL_2019_485_a0 ER -
V. Abgaryan; A. Khvedelidze; A. Torosyan. The global indicator of classicality of an arbitrary $N$-level quantum system. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 5-23. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a0/
[1] H. C. F. Lemos, A. C. L. Almeida, B. Amaral, A. C. Oliveira, “Roughness as classicality indicator of a quantum state”, Phys. Lett., A 382 (2018), 823–836 | DOI | MR | Zbl
[2] A. Kenfack, K. $\dot{\text{Z}}$yczkowski, “Negativity of the Wigner function as an indicator of non-classicality”, J. Opt. B: Quantum Semiclass. Opt., 6 (2004), 396–404 | DOI | MR
[3] L. Mandel, “Sub-Poissonian photon statistics in resonance fluorescence”, Opt. Lett., 4 (1979), 205–207 | DOI
[4] V. Veitch, Ch. Ferrie, D. Gross, J. Emerson, “Negative quasi-probability as a resource for quantum computation”, New J. Phys., 14 (2012) | DOI
[5] F. Albarelli, M. G. Genoni, G. A. Matteo, A. Ferraro, “Resource theory of quantum non-Gaussianity and Wigner negativity”, Phys. Rev., A 98 (2018), 052350 | DOI
[6] E. P. Wigner, Quantum-mechanical distribution functions revisited. Part I: Physical Chemistry. Part II: Solid State Physics, 1997, 251–262 | DOI
[7] Ch. Ferrie, R. Morris, J. Emerson, “Necessity of negativity in quantum theory”, Phys. Rev., A 82 (2010), 044103 | DOI | MR
[8] R. F. O'Connell, E. P. Wigner, “Quantum-Mechanical Distribution Functions: Conditions for Uniqueness”, Phys. Lett., A 83 (1981), 145–148 | DOI | MR
[9] R. F. O'Connell, E. P. Wigner, “Manifestations of Bose and Fermi statistics on the quantum distribution function for systems of spin-$0$ and spin-$1/2$ particles”, Phys. Rev., A 30 (1984), 2613 | DOI | MR
[10] V. Abgaryan, A. Khvedelidze, On families of Wigner functions for $N$-level quantum systems, 2018, arXiv: 1708.05981 | Zbl
[11] V. Abgaryan, A. Khvedelidze, A. Torosyan, “On moduli space of the Wigner quasiprobability distributions for N-dimensional quantum systems”, Zap. Nauchn. Semin. POMI, 468, 2018, 177–201 | MR
[12] M. Hillery, “Nonclassical distance in quantum optics”, Phys. Rev., A 35 (1987), 725 | DOI
[13] V. V. Dodonov, O. V. Man'ko, V. I. Man'ko, A. Wünsche, “Hilbert–Schmidt distance and non-classicality of states in quantum optics”, J. Mod. Opt., 47:4 (2000), 633–654 | DOI | MR | Zbl
[14] P. Marian, T. A. Marian, H. Scutaru, “Quantifying nonclassicality of one-mode Gaussian states of the radiation field”, Phys. Rev. Lett., 88:15 (2002), 153601 | DOI
[15] K. $\dot{\text{Z}}$yczkowski, H.-J. Sommers, “Hilbert–Schmidt volume of the set of mixed quantum states”, J. Phys. A: Math. Gen., 36 (1011), 10115 | MR
[16] I. Daubechies, “Continuity statements and counterintuitive examples in connection with Weyl quantization”, J. Math. Phys., 24 (1982), 1453 | DOI | MR
[17] I. Bengtsson, A. Ericsson, M. Kus, W. Tadej, K. $\dot{\text{Z}}$yczkowski, “Birkhoff's Polytope and Unistochastic Matrices, $N=3$ and $N=4$”, Commun. Math. Phys., 259 (2005), 307–324 | DOI | MR | Zbl
[18] R. Bhatia, “Majorisation and Doubly Stochastic Matrices”, Matrix Analysis, Graduate Texts in Mathematics, 169, Springer, 1997 | DOI | MR