Notes on a Grothendieck--Serre conjecture in mixed characteristic case
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 138-148

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a discrete valuation ring with an infinite residue field, $X$ be a smooth projective curve over $R$. Let $\mathbf{G}$ be a simple simply-connected group scheme over $R$ and $E$ be a principal $\mathbf{G}$-bundle over $X$. We prove that $E$ is trivial locally for the Zariski topology on $X$ providing it is trivial over the generic point of $X$. The main aim of the present paper is to develop a method rather than to get a very strong concrete result.
@article{ZNSL_2019_484_a9,
     author = {I. Panin},
     title = {Notes on a {Grothendieck--Serre} conjecture in mixed characteristic case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--148},
     publisher = {mathdoc},
     volume = {484},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a9/}
}
TY  - JOUR
AU  - I. Panin
TI  - Notes on a Grothendieck--Serre conjecture in mixed characteristic case
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 138
EP  - 148
VL  - 484
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a9/
LA  - en
ID  - ZNSL_2019_484_a9
ER  - 
%0 Journal Article
%A I. Panin
%T Notes on a Grothendieck--Serre conjecture in mixed characteristic case
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 138-148
%V 484
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a9/
%G en
%F ZNSL_2019_484_a9
I. Panin. Notes on a Grothendieck--Serre conjecture in mixed characteristic case. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 138-148. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a9/