Notes on a Grothendieck--Serre conjecture in mixed characteristic case
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 138-148
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a discrete valuation ring with an infinite residue field, $X$ be a smooth projective curve over $R$. Let $\mathbf{G}$ be a simple simply-connected group scheme over $R$ and $E$ be a principal $\mathbf{G}$-bundle over $X$. We prove that $E$ is trivial locally for the Zariski topology on $X$ providing it is trivial over the generic point of $X$. The main aim of the present paper is to develop a method rather than to get a very strong concrete result.
@article{ZNSL_2019_484_a9,
author = {I. Panin},
title = {Notes on a {Grothendieck--Serre} conjecture in mixed characteristic case},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--148},
publisher = {mathdoc},
volume = {484},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a9/}
}
I. Panin. Notes on a Grothendieck--Serre conjecture in mixed characteristic case. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 138-148. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a9/