Voir la notice du chapitre de livre
@article{ZNSL_2019_484_a8,
author = {R. Lubkov and A. Stepanov},
title = {Subgroups of {Chevalley} groups over rings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {121--137},
year = {2019},
volume = {484},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a8/}
}
R. Lubkov; A. Stepanov. Subgroups of Chevalley groups over rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 121-137. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a8/
[1] E. Abe, “Automorphisms of chevalley groups over commutative rings”, St.Petersburg Math. J., 5:2 (1994), 287–300 | MR
[2] A. S. Anan'evskii, N. A. Vavilov, S. S. Sinchuk, “Overgroups of $\mathrm{E}(l,R)\otimes \mathrm{E}(m,R)$ I. Levels and normalizers”, St. Petersburg Math. J., 23:5 (2012), 819–849 | DOI | MR | Zbl
[3] A. S. Ananievsky, N. A. Vavilov, S. S. Sinchuk, “Overgroups of $\mathrm{E}(l,R)\otimes \mathrm{E}(m,R)$”, J. Math. Sci. (N. Y.), 161:4 (2009), 461–473 | DOI | MR | Zbl
[4] Z. I. Borevich, N. A. Vavilov, “The distribution of subgroups in the general linear group over a commutative ring”, Proc. Steklov. Inst. Math., 165 (1985), 27–46 | MR | Zbl
[5] E. I. Bunina, “Automorphisms of Chevalley groups of different types over commutative rings”, J. Algebra, 355 (2012), 154–170 | DOI | MR | Zbl
[6] M. Demazure, P. Gabriel, Introduction to algebraic geometry and algebraic groups, Math. Stud., 39, North-Holland, Amsterdam, 1980 | MR | Zbl
[7] P. B. Gvozdevski, “Overgroups of Levi subgroups I. The case of abelian unipotent radical”, St. Petersburg Math. J., 31:6 (2020) | MR
[8] R. Hazrat, N. Vavilov, “$K_1$ of Chevalley groups are nilpotent”, J. Pure and Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl
[9] R. A. Lubkov, I. I. Nekrasov, “Overgroups of exterior powers of an elementary group. I. Levels and normalizers”, Linear Multilinear Algebra (to appear)
[10] R. A. Lubkov, I. I. Nekrasov, “Explicit equations for exterior square of the general linear group”, Zap. Nauchn. semin., 470, 2018, 120–137 | MR
[11] A. Yu. Luzgarev, “Overgroups of $F_4$ in $E_6$ over commutative rings”, St. Petersburg Math. J., 20 (2009), 955–981 | DOI | MR | Zbl
[12] J. S. Milne, Basic theory of affine group schemes, , 2012 http://www.jmilne.org/math/CourseNotes/AGS.pdf
[13] N. H. T. Nhat, T. N. Hoi, “The normalizer of the elementary linear group of a module arising under extension of the base ring”, J. Math. Sci., 234:2 (2018), 197–202 | DOI | MR | Zbl
[14] Ya. N. Nuzhin, “Groups contained between groups of Lie type over different fields”, Algebra Logic, 22 (1983), 378–389 | DOI | MR | Zbl
[15] Ya. N. Nuzhin, “Intermediate subgroups in the Chevalley groups of type $B_l$, $C_l$, $F_4$, and $G_2$ over the nonperfect fields of characteristic $2$ and $3$”, Sib. Math. J., 54:1 (2013), 119–123 | DOI | MR | Zbl
[16] Ya. N. Nuzhin, A. V. Yakushevich, “Intermediate subgroups of Chevalley groups over a field of fractions of a ring of principal ideals”, Algebra Logic, 39:3 (2000), 199–206 | DOI | MR | Zbl
[17] A. V. Shchegolev, “Overgroups of elementary block-diagonal subgroups in the classical symplectic group over an arbitrary commutative ring”, St. Petersburg Math. J., 30:6 (2019), 1007–1041 | DOI | MR | Zbl
[18] A. K. Stavrova, A. V. Stepanov, Normal structure of isotropic reductive groups over rings, 2017, arXiv: 1801.08748 | MR
[19] A. V. Stepanov, “Free product subgroups between Chevalley groups $\mathrm{G}(\Phi,F)$ and $\mathrm{G}(\Phi,F[t])$”, J. Algebra, 324:7 (2010), 1549–1557 | DOI | MR | Zbl
[20] A. V. Stepanov, “Subring subgroups in Chevalley groups with doubly laced root systems”, J. Algebra, 362 (2012), 12–29 | DOI | MR | Zbl
[21] A. V. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl
[22] G. Taddei, “Normalité des groupes {élé}mentaires dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55, 1986, 693–710 | DOI | MR | Zbl
[23] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 38 (1986), 219–230 | DOI | MR | Zbl
[24] N. Vavilov, V. Petrov, “Overgroups of $\mathrm{EO}(2l,R)$”, J. Math. Sci. (N. Y.), 116:1 (2003), 2917–2925 | DOI | MR
[25] N. Vavilov, V. Petrov, “Overgroups of $\mathrm{Ep}(2l,R)$”, St. Petersburg Math. J., 15:4 (2004), 515–543 | DOI | MR | Zbl
[26] N. Vavilov, V. Petrov, “Overgroups of $\mathrm{EO}(n,R)$”, St.Petersburg Math. J., 19:2 (2008), 167–195 | DOI | MR | Zbl
[27] N. A. Vavilov, A. V. Stepanov, “Overgroups of semisimple groups”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008, no. 3, 51–95 | MR | Zbl
[28] H. You, “Overgroups of symplectic group in linear group over commutative rings”, J. Algebra, 282:1 (2004), 23–32 | DOI | MR | Zbl
[29] H. You, “Overgroups of classical groups over commutative ring in linear group”, Sci. China Math., 49:5 (2006), 626–638 | DOI | MR | Zbl