Subgroups of Chevalley groups over rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 121-137
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper, we study the subgroup lattice of a Chevalley group $\operatorname{G}(\Phi,R)$ over a commutative ring $R$, containing the subgroup $D(R)$, where $D$ is a subfunctor of $\operatorname{G}(\Phi,\_)$. Assuming that over any field $F$ the normalizer of the group $D(F)$ is “closed to be maximal”, we formulate some technical conditions, which imply that the lattice is standard. We also study the conditions concerning the normalizer of $D(R)$ in the case, where $D(R)$ is the elementary subgroup of another Chevalley group $\operatorname{G}(\Psi,R)$ embedded into $\operatorname{G}(\Phi,R)$.
@article{ZNSL_2019_484_a8,
     author = {R. Lubkov and A. Stepanov},
     title = {Subgroups of {Chevalley} groups over rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--137},
     year = {2019},
     volume = {484},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a8/}
}
TY  - JOUR
AU  - R. Lubkov
AU  - A. Stepanov
TI  - Subgroups of Chevalley groups over rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 121
EP  - 137
VL  - 484
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a8/
LA  - en
ID  - ZNSL_2019_484_a8
ER  - 
%0 Journal Article
%A R. Lubkov
%A A. Stepanov
%T Subgroups of Chevalley groups over rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 121-137
%V 484
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a8/
%G en
%F ZNSL_2019_484_a8
R. Lubkov; A. Stepanov. Subgroups of Chevalley groups over rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 121-137. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a8/

[1] E. Abe, “Automorphisms of chevalley groups over commutative rings”, St.Petersburg Math. J., 5:2 (1994), 287–300 | MR

[2] A. S. Anan'evskii, N. A. Vavilov, S. S. Sinchuk, “Overgroups of $\mathrm{E}(l,R)\otimes \mathrm{E}(m,R)$ I. Levels and normalizers”, St. Petersburg Math. J., 23:5 (2012), 819–849 | DOI | MR | Zbl

[3] A. S. Ananievsky, N. A. Vavilov, S. S. Sinchuk, “Overgroups of $\mathrm{E}(l,R)\otimes \mathrm{E}(m,R)$”, J. Math. Sci. (N. Y.), 161:4 (2009), 461–473 | DOI | MR | Zbl

[4] Z. I. Borevich, N. A. Vavilov, “The distribution of subgroups in the general linear group over a commutative ring”, Proc. Steklov. Inst. Math., 165 (1985), 27–46 | MR | Zbl

[5] E. I. Bunina, “Automorphisms of Chevalley groups of different types over commutative rings”, J. Algebra, 355 (2012), 154–170 | DOI | MR | Zbl

[6] M. Demazure, P. Gabriel, Introduction to algebraic geometry and algebraic groups, Math. Stud., 39, North-Holland, Amsterdam, 1980 | MR | Zbl

[7] P. B. Gvozdevski, “Overgroups of Levi subgroups I. The case of abelian unipotent radical”, St. Petersburg Math. J., 31:6 (2020) | MR

[8] R. Hazrat, N. Vavilov, “$K_1$ of Chevalley groups are nilpotent”, J. Pure and Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[9] R. A. Lubkov, I. I. Nekrasov, “Overgroups of exterior powers of an elementary group. I. Levels and normalizers”, Linear Multilinear Algebra (to appear)

[10] R. A. Lubkov, I. I. Nekrasov, “Explicit equations for exterior square of the general linear group”, Zap. Nauchn. semin., 470, 2018, 120–137 | MR

[11] A. Yu. Luzgarev, “Overgroups of $F_4$ in $E_6$ over commutative rings”, St. Petersburg Math. J., 20 (2009), 955–981 | DOI | MR | Zbl

[12] J. S. Milne, Basic theory of affine group schemes, , 2012 http://www.jmilne.org/math/CourseNotes/AGS.pdf

[13] N. H. T. Nhat, T. N. Hoi, “The normalizer of the elementary linear group of a module arising under extension of the base ring”, J. Math. Sci., 234:2 (2018), 197–202 | DOI | MR | Zbl

[14] Ya. N. Nuzhin, “Groups contained between groups of Lie type over different fields”, Algebra Logic, 22 (1983), 378–389 | DOI | MR | Zbl

[15] Ya. N. Nuzhin, “Intermediate subgroups in the Chevalley groups of type $B_l$, $C_l$, $F_4$, and $G_2$ over the nonperfect fields of characteristic $2$ and $3$”, Sib. Math. J., 54:1 (2013), 119–123 | DOI | MR | Zbl

[16] Ya. N. Nuzhin, A. V. Yakushevich, “Intermediate subgroups of Chevalley groups over a field of fractions of a ring of principal ideals”, Algebra Logic, 39:3 (2000), 199–206 | DOI | MR | Zbl

[17] A. V. Shchegolev, “Overgroups of elementary block-diagonal subgroups in the classical symplectic group over an arbitrary commutative ring”, St. Petersburg Math. J., 30:6 (2019), 1007–1041 | DOI | MR | Zbl

[18] A. K. Stavrova, A. V. Stepanov, Normal structure of isotropic reductive groups over rings, 2017, arXiv: 1801.08748 | MR

[19] A. V. Stepanov, “Free product subgroups between Chevalley groups $\mathrm{G}(\Phi,F)$ and $\mathrm{G}(\Phi,F[t])$”, J. Algebra, 324:7 (2010), 1549–1557 | DOI | MR | Zbl

[20] A. V. Stepanov, “Subring subgroups in Chevalley groups with doubly laced root systems”, J. Algebra, 362 (2012), 12–29 | DOI | MR | Zbl

[21] A. V. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl

[22] G. Taddei, “Normalité des groupes {élé}mentaires dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55, 1986, 693–710 | DOI | MR | Zbl

[23] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 38 (1986), 219–230 | DOI | MR | Zbl

[24] N. Vavilov, V. Petrov, “Overgroups of $\mathrm{EO}(2l,R)$”, J. Math. Sci. (N. Y.), 116:1 (2003), 2917–2925 | DOI | MR

[25] N. Vavilov, V. Petrov, “Overgroups of $\mathrm{Ep}(2l,R)$”, St. Petersburg Math. J., 15:4 (2004), 515–543 | DOI | MR | Zbl

[26] N. Vavilov, V. Petrov, “Overgroups of $\mathrm{EO}(n,R)$”, St.Petersburg Math. J., 19:2 (2008), 167–195 | DOI | MR | Zbl

[27] N. A. Vavilov, A. V. Stepanov, “Overgroups of semisimple groups”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008, no. 3, 51–95 | MR | Zbl

[28] H. You, “Overgroups of symplectic group in linear group over commutative rings”, J. Algebra, 282:1 (2004), 23–32 | DOI | MR | Zbl

[29] H. You, “Overgroups of classical groups over commutative ring in linear group”, Sci. China Math., 49:5 (2006), 626–638 | DOI | MR | Zbl