Mod-$2$ (co)homology of an abelian group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 72-85
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that for a prime $p\ne 2$ there is the following natural description of the homology algebra of an abelian group $H_*(A,\mathbb F_p)\cong \Lambda(A/p)\otimes \Gamma({}_pA)$ and for finitely generated abelian groups there is the following description of the cohomology algebra of $H^*(A,\mathbb F_p)\cong \Lambda((A/p)^\vee)\otimes \mathsf{Sym}(({}_pA)^\vee).$ We prove that there are no such descriptions for $p=2$ that “depend” only on $A/2$ and ${}_2A$ but we provide natural descriptions of $H_*(A,\mathbb F_2)$ and $H^*(A,\mathbb F_2)$ that “depend” on $A/2,$ ${}_2A$ and a linear map $\widetilde \beta\colon {}_2A\to A/2.$ Moreover, we prove that there is a filtration by subfunctors on $H_n(A,\mathbb F_2)$ whose quotients are $\Lambda^{n-2i}(A/2)\otimes \Gamma^i({}_2A)$ and that for finitely generated abelian groups there is a natural filtration on $H^n(A,\mathbb F_2)$ whose quotients are $ \Lambda^{n-2i}((A/2)^\vee)\otimes \mathsf{Sym}^i(({}_2A)^\vee).$
@article{ZNSL_2019_484_a5,
author = {S. O. Ivanov and A. A. Zaikovskii},
title = {Mod-$2$ (co)homology of an abelian group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--85},
publisher = {mathdoc},
volume = {484},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a5/}
}
S. O. Ivanov; A. A. Zaikovskii. Mod-$2$ (co)homology of an abelian group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 72-85. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a5/