Mod-$2$ (co)homology of an abelian group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 72-85

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that for a prime $p\ne 2$ there is the following natural description of the homology algebra of an abelian group $H_*(A,\mathbb F_p)\cong \Lambda(A/p)\otimes \Gamma({}_pA)$ and for finitely generated abelian groups there is the following description of the cohomology algebra of $H^*(A,\mathbb F_p)\cong \Lambda((A/p)^\vee)\otimes \mathsf{Sym}(({}_pA)^\vee).$ We prove that there are no such descriptions for $p=2$ that “depend” only on $A/2$ and ${}_2A$ but we provide natural descriptions of $H_*(A,\mathbb F_2)$ and $H^*(A,\mathbb F_2)$ that “depend” on $A/2,$ ${}_2A$ and a linear map $\widetilde \beta\colon {}_2A\to A/2.$ Moreover, we prove that there is a filtration by subfunctors on $H_n(A,\mathbb F_2)$ whose quotients are $\Lambda^{n-2i}(A/2)\otimes \Gamma^i({}_2A)$ and that for finitely generated abelian groups there is a natural filtration on $H^n(A,\mathbb F_2)$ whose quotients are $ \Lambda^{n-2i}((A/2)^\vee)\otimes \mathsf{Sym}^i(({}_2A)^\vee).$
@article{ZNSL_2019_484_a5,
     author = {S. O. Ivanov and A. A. Zaikovskii},
     title = {Mod-$2$ (co)homology of an abelian group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {72--85},
     publisher = {mathdoc},
     volume = {484},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a5/}
}
TY  - JOUR
AU  - S. O. Ivanov
AU  - A. A. Zaikovskii
TI  - Mod-$2$ (co)homology of an abelian group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 72
EP  - 85
VL  - 484
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a5/
LA  - en
ID  - ZNSL_2019_484_a5
ER  - 
%0 Journal Article
%A S. O. Ivanov
%A A. A. Zaikovskii
%T Mod-$2$ (co)homology of an abelian group
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 72-85
%V 484
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a5/
%G en
%F ZNSL_2019_484_a5
S. O. Ivanov; A. A. Zaikovskii. Mod-$2$ (co)homology of an abelian group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 72-85. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a5/